The Gemmological Laboratory Book
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOREWORD</td>
<td></td>
<td>III</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>1.</td>
<td>SCOPE</td>
<td>6</td>
</tr>
<tr>
<td>2.</td>
<td>NORMATIVE REFERENCES</td>
<td>6</td>
</tr>
<tr>
<td>3.</td>
<td>TERMS AND DEFINITIONS</td>
<td>7</td>
</tr>
<tr>
<td>4.</td>
<td>MANAGEMENT REQUIREMENTS</td>
<td>9</td>
</tr>
<tr>
<td>5.</td>
<td>TECHNICAL REQUIREMENTS</td>
<td>13</td>
</tr>
<tr>
<td>6.</td>
<td>TEST METHOD PROTOCOL</td>
<td>16</td>
</tr>
</tbody>
</table>

INDEX | 209 |
Foreword

CIBJO is the French acronym for the Confédération Internationale de la Bijouterie, Joaillerie, Orfèvrerie, des Diamants, Perles et Pierres, which translates as the International Confederation of Jewellery, Silverware, Diamonds, Pearls and Stones (normally shortened to the International Jewellery Confederation). Founded in 1926 as BIBOAH, a European organisation whose mission was to represent and advance the interests of the jewellery trade in Europe, it was reorganised in 1961 and renamed CIBJO, in 2009 it was once again reorganised and officially named “CIBJO, The World Jewellery Confederation”. Today CIBJO, which is domiciled in Switzerland, is a non-profit confederation of national and international trade associations including commercial organisations involved in the jewellery supply chain. It now has members from countries representing all five continents of the world. CIBJO printed its first deliberations on terminology and trade practices in 1968.

It is the task of CIBJO to record the accepted trade practices and nomenclature for the industry throughout the world. The records of the trade practices complement existing fair trade legislation of a nation or in the absence of relevant national laws they can be considered as trading standards. In countries where laws or norms exist, which conflict with the laws, norms or trade practices in other countries, CIBJO will support the national trade organisations to prevent trade barriers developing. The purpose of CIBJO is to encourage harmonisation, promote international co-operation within the jewellery industry, consider issues which are of concern to the trade worldwide and to communicate proactively with members. Foremost amongst these the aim is to protect consumer confidence in the industry. CIBJO pursues all of these objectives through informed deliberation and by reaching decisions in accordance with its Statutes. CIBJO relies upon the initiative of its members to support and implement its standards, and to protect the trust of the public in the industry.

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

The work of CIBJO is accomplished through Committees, Commissions and Sectors. Committees and Commissions consider standards for use in the jewellery supply chain. Sectors represent levels of trade in the jewellery industry. Sectors and commissions advise the Executive Committee on current trade practices and issues that affect the jewellery industry.

Three independent sectors exist within the confederation:

Sector A — The Products Sector

Sector B — The Supply Chain Sector

Sector C — The Service Sector

The Executive Committee may appoint Commissions that consider detailed issues. At present these are:

Coloured Stone

Coral
Diamond
Ethics
Gemmological
Pearl
Marketing & Education
Precious Metals
World Jewellers Vigilance

The Commissions for Diamonds, Gemstones, Pearls and Precious Metals have collated the guidelines, which present the accepted trade practices for applying descriptions to these materials. It is in the best interest of all those concerned to be aware of them.

The Sectors and Commissions will propose changes in the standards, also known as the Blue Books, to the Executive Committee. After review the Executive Committee will submit the accepted proposals for adoption to the Board of Directors and if approved they will notify the assembly of delegates of the changes at the annual congress. Furthermore, it is our mutual responsibility to support these recommendations, which concern all professional people connected with diamonds, gemstones, pearls and precious metals. CIBJO Standards are subject to government regulations in the respective jurisdictions of CIBJO members.

The national umbrella organisation for each country represents, in principle, all the national trade organisations involved in the sectors mentioned above. This democratic structure, which has contributed to CIBJO’s world-wide recognition also includes international trade and commercial organisations, it provides an international forum for the trade to collectively draw attention to issues and implement resulting decisions.

CIBJO Secretariat:

CIBJO – The World Jewellery Confederation
Viale Berengario,19
20149 Milano, Italy

Tel: +39-02-4997-7098 / 7097 / 6187 Fax: + 39 02- 4997-7059
E-mail: cibjo@cibjo.org
Web site: www.cibjo.org
Introduction

The CIBJO Gemmological Laboratory Book is intended as a source of information and recommendations for gemmological laboratories on which they may choose to base their activities in order to ensure proper quality control and accountability within their Gemmological Laboratory.

The work of a Gemmological Laboratory and the test results it produces are reliant upon good practices throughout the Gemmological Laboratory's operation, from the first to the last interaction with the Customer.

The following definitions apply in understanding how to implement a CIBJO standard and normative references (Blue Books, PAS).

- "shall" indicates a requirement;
- "should" indicates a recommendation;
- "may" is used to indicate that something is permitted;
- "can" is used to indicate that something is possible.

The Gemmological Commission strongly recommends that all Gemmological Laboratories aspire to achieve the highest possible level of accountability throughout their operations and that the best practices recommended in the CIBJO Gemmological Laboratory Book are followed as a minimum. However, ideally all Gemmological Laboratories should also consider the application of ISO/IEC 17025.

The Gemmological Commission

October 2016
CIBJO Guidelines for Gemmological Laboratories

This book takes its concept from ISO/IEC 17025, an International Standard for which it is recommended that all Gemmological Laboratories seriously consider compliance.

Disclaimer — CIBJO recommends the best practices but is not responsible for gemmological reports issued by a Laboratory.

1. Scope

This CIBJO Gemmological Laboratory Book suggests best practices and general requirements for the competence to carry out tests, grading and/or internal calibrations, on instruments, coloured gemstones, diamonds and pearls within gemmological laboratories. The clauses herein are a guide only and shall not be regarded or considered as rules of application, laws, or statutes that govern the operation of gemmological laboratories.

The CIBJO Gemmological Laboratory Book suggests best practices for testing, grading and internal calibration performed using those methods both typically used and within gemmological laboratories as well as those uniquely developed. The suggestions are pertinent to the operations of all gemmological laboratories that issue test results regardless of whether or not these are part of a service that is paid for by a customer. They are also pertinent regardless of a gemmological laboratory’s size and scope.

When a gemmological laboratory does not undertake one or more of the activities covered by this CIBJO Gemmological Laboratory Book, the suggestions stated in those clauses may not apply.

This CIBJO Gemmological Laboratory Book is for use by gemmological laboratories in developing their management system for quality, administrative and technical operations. It is not intended nor should it be considered as a guarantee for the quality of results issued by the laboratories.

Gemmological laboratories should refer to the appropriate International standards when organising compliance with safety requirements for the operation of gemmological laboratories: these are not covered in the CIBJO Gemmological Laboratory Book.

2. Normative references

The following referenced documents are recommended readings. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

The Coral Book, CIBJO, International Confederation of Jewellery, Silverware, Diamonds, Pearls and Stones, the World Jewellery Confederation, Viale Berengario,19, 20149 Milano, Italy. cibjo@cibjo.org
3. Terms and definitions

3.1. Audit

examination of the quality, state, efficiency of an organisation, system, process, project or product to ascertain its validity and reliability.

3.2. Calibration

a set of graded measurements that show position or values to mark or correct the units of measurements of an instrument.

3.3. Certificate

a document of a legal standing.

3.4. Certified reference materials — CRMs

reference materials, accompanied by documentation issued by an authoritative body and providing one or more specified property values with associated uncertainties and traceability, using valid procedures.

3.5. Competent subcontractor

a contractor of the primary contractor, in this case the laboratory, who by virtue of their knowledge, experience and equipment is competent to do the work.

3.6. Gem materials

those materials listed in the CIBJO, Diamond, Pearl, and Gemstones Books (see 2, Normative References).
3.7. Gemmological laboratory

an establishment that provides controlled conditions in which the identification, authentication and grading of gem materials may be performed; scientific research, experiments and measurements may be carried on as well with the aim of a better knowledge of gem materials.

3.8. Gemmology

the science, art and profession of identifying, authenticating, researching and grading gem materials.

3.9. Gemological laboratory

an alternative (American English) spelling for gemmological laboratory.

3.10. Gemmology

an alternative (American English) spelling for gemmology

3.11. Grading

the classification of technical/commercial characteristics of gem materials

3.12. Internal audit

control of the Laboratory’s quality system, to ensure that the activities carried out in the Laboratory are in conformity with the established policies and procedures of the management system, with the aim of correcting any non-conformities and introducing improvements. The final outcome is to minimize the percentage of errors and give valid, consistent and reliable results and services.

3.13. Internal calibrations

calibrations done in a Centre on its own instruments, to check their validity and consistency with the Standards.

3.14. Laboratory / Lab

trade short form for a gemmological laboratory, see 3.7 and 3.9.

3.15. Quality and technical record

written notes on facts related to quality and/or to technical items so that they can be remembered or referred to in the future.

3.16. Reference standards and reference materials

references calibrated by a body that can provide traceability, used to establish, by comparison, the value of physical or chemical properties.
3.17. Report

A description of technical/commercial characteristics of gem materials in accordance with the rules relative to CIBJO international agreements.

3.18. Sampling

A defined procedure whereby a part of a substance, a material, a product or a lot is taken to provide for testing of a representative sample of a whole. Sampling procedures describe the selection, sampling plan, withdrawal and preparation of a sample or samples from a substance, material, product or a lot, to yield the required information.

3.19. SI units – International System of Units

An internationally agreed system of measurement that uses seven base units (length, mass, time, electric current, thermodynamic temperature, luminous intensity and amount of substance) with two supplementary units (plane angle and solid angle).

3.20. Subcontract

A contract that assigns some of the obligations of a prior contract to another party.

3.21. Test

A procedure in which technical characteristics of gem materials are observed, measured, analysed and established.

3.22. Traceability

Completeness of the information about every step in a process chain.

3.23. Reproducibility of results

Ability of a gemmological laboratory to get the same results when repeating tests, using the same reference samples and standards.

4. Management requirements

4.1. Organisation

4.1.1. The gemmological laboratory, the organisation, or commercial company of which it is part shall be legally responsible for the activities of the gemmological laboratory. The management system shall cover work carried out by the gemmological laboratory whether inside or outside the political/administrative borders of its registration.

4.1.2. In order to make clear any implied or potential conflicts of interest, if a gemmological laboratory is entirely or partly owned by, or has investors within a gem material (loose or mounted) trade organisation or a commercial company that trades in gem materials (loose or mounted), in particular where traders or potential customers are on a board(s) and may play a role in, or have an influence upon the testing and/or reporting activities of the
4.1.3. A gemmological laboratory should be able to demonstrate that it is impartial and that it and its personnel are free from any undue commercial, financial and other pressures which might influence their technical judgement. The gemmological laboratory should not engage in any activities that may endanger the trust in its independence of judgement and integrity in relation to its testing or internal calibration activities.

4.1.4. The gemmological laboratory management system shall ensure that gemmological laboratory personnel are free from any internal and external pressures and influences that may interfere with the quality of their work; the performance of tests, grading and/or instrument calibrations. The management system shall have personnel in-place that monitor such influences and when necessary have the power to take corrective action.

4.1.5. The management system shall be clearly defined to staff and customers through an effective means of communication.

4.1.6. Testing and internal calibrations shall be properly supervised by technically qualified managers that have overall responsibility and authority over technical staff and the work they carry out, and reports that are issued.

4.1.7. A member of the technical staff shall be appointed to manage the quality of the work carried out in the gemmological laboratory. This manager shall ensure that all test protocols are adhered to, that quality systems are followed at all times that the staff is aware of their quality related responsibilities at all times.

4.2. Management systems

4.2.1. A system of protocols that ensure the quality of the work carried out by the gemmological laboratory shall be available to the staff and that the contents are effectively communicated. These protocols shall cover all aspects of the gemmological laboratory functions, including but not limited to, receipting of goods, weights and measures, inventory control, work distribution, instrument maintenance and operation, results analysis and report nomenclature.

4.2.2. All management systems shall be reviewed at least annually and a written quality statement issued by top management. This statement shall commit management to the observation of best practices in the identification and reporting on gem materials and the quality of services given to customers. The statements should also indicate management’s commitment to compliance with the Gemmological Laboratory Book and/or ISO/IEC 17025.

4.3. Document Control
4.3.1. A full list of approved documents and their current status shall be established and shall be readily available to preclude the use of out of date versions. All approved documents shall be available in and to all locations.

4.3.2. All altered or new document text shall be identified in the document or the appropriate attachments.

4.3.3. There shall be clear procedures to describe how changes in documents are made and controlled.

4.3.4. Documents must include the list of related attachments.

4.4. Review of customer requests

4.4.1. Requirements and or requests shall be clearly established upon receiving gem materials from a customer.

4.4.2. All test methods shall be adequately defined and be clearly understood by the gemmological laboratory.

4.4.3. The gemmological laboratory shall have the capability and resources to meet the customer’s requirements and/or requests.

4.4.4. Any differences in understanding between the customer and the gemmological laboratory shall be resolved prior to any work being carried out.

4.4.5. Records shall be kept of any discussions with customers.

4.5. Subcontracting of tests

4.5.1. When a gemmological laboratory subcontracts work, this work shall be placed with a competent subcontractor.

4.5.2. If customer’s work is subcontracted the gemmological laboratory shall advise customers of the circumstances, including the acknowledgement of their continued responsibility for the gem materials submitted.

4.6. Service to the customer

4.6.1. Within the limitations set by security requirements, the gemmological laboratory shall agree to any customer request for the monitoring of performance related to the work performed, provided also that the gemmological laboratory ensures confidentiality to other customers.

4.6.2. The gemmological laboratory shall seek feedback from its customers. This feedback shall be used to improve the management system, testing and internal calibration activities and customer services.

4.7. Complaints
4.7.1. The gemmological laboratory shall have a policy and procedure for the resolution of complaints received from customers or other parties. Records shall be maintained of all complaints and of the investigations and corrective actions taken by the gemmological laboratory.

4.7.2. A secondary customer should make any complaints through the primary customer. Responses to complaints shall be given to the primary customer only.

4.8. Corrective action

4.8.1. The gemmological laboratory shall establish a policy and a procedure and shall designate appropriate authorities for implementing corrective action when departures from the policies and procedures in the management system or technical operations have been identified.

4.9. Additional audits

4.9.1. Where the identification of departures casts doubts on the gemmological laboratory's compliance with its own policies and procedures, or on its compliance with this CIBJO Gemmological Laboratory Book, the gemmological laboratory shall ensure that the appropriate areas of activity are audited as soon as possible.

4.10. Control of records

4.10.1. The gemmological laboratory shall establish and maintain procedures for identification, collection, indexing, access, filing, storage, maintenance and disposal of quality and technical records. Quality records shall include reports from internal audits and management reviews as well as records of corrective and preventive actions.

4.11. Internal audits

4.11.1. The gemmological laboratory shall periodically conduct internal audits of its activities to verify that its operations continue to comply with the requirements of the management system and this CIBJO Gemmological Laboratory Book. Such audits shall be carried out by trained and qualified personnel who are, wherever resources permit, independent of the activity to be audited.

4.12. Management reviews

4.12.1. The gemmological laboratory’s top management shall periodically conduct a review of the gemmological laboratory’s management system and testing and/or internal calibration activities to ensure their continuing suitability and effectiveness, and to introduce necessary changes or improvements. The review shall take account of

- the suitability of policies and procedures;
- reports from managerial and supervisory personnel;
- the outcome of recent internal audits;
- corrective and preventive actions;
• assessments by external bodies;
• the results of inter laboratory comparisons or proficiency tests;
• changes in the volume and type of the work;
• customer feedback;
• complaints;
• recommendations for improvement;
• other relevant factors, such as quality control activities, resources and staff training.

A typical period for conducting a management review is once every 12 months. Results should be fed into the laboratory planning system and should include the goals, objectives and action plans for the coming year. A management review includes consideration of related subjects at regular management meetings.

5. Technical requirements

Many factors determine the correctness and reliability of the tests, grading and/or internal calibrations performed by a gemmological laboratory. These factors include contributions from:

• human factors;
• accommodation and environmental conditions;
• test and calibration methods and method validation;
• equipment;
• measurement traceability;
• samples;
• the handling of test and calibration items.

5.1. Personnel

5.1.1. The gemmological laboratory management shall ensure the competence of all who operate specific equipment, perform tests and/or internal calibrations, evaluate results, and sign test reports. When using staff that are undergoing training, appropriate supervision shall be provided. Personnel performing specific tasks shall be qualified on the basis of appropriate education, training, experience and/or demonstrated skills, as required. The gemmological laboratory shall maintain current anonymous job descriptions for managerial, technical and key support personnel involved in tests and/or internal calibrations.

5.1.2. The gemmological laboratory should count on the presence of a minimum of three persons as defined in 5.1.1.

5.2. Accommodation and environmental conditions

5.2.1. Gemmological laboratory facilities for testing and/or grading and internal calibration shall be such as to facilitate correct performance of the tests and/or grading and in line with international agreements. The gemmological laboratory shall ensure that the environmental conditions do not invalidate the
results or adversely affect the required quality of any measurement. The technical requirements for accommodation and environmental conditions that can affect the results of tests and grading shall be documented.

5.3. Equipment

5.3.1. The gemmological laboratory shall be furnished with all items of equipment required for the correct performance of the tests and/or grading and internal calibration. See also CIBJO Application Document for Laboratories (www.cibjo.org). In those cases where the gemmological laboratory needs to use equipment outside its permanent control, it shall ensure that the requirements of this CIBJO Gemmological Laboratory Book are met.

5.3.2. Equipment shall be operated by authorised personnel. Up-to-date instructions on the use and maintenance of equipment shall be readily available for use by the appropriate gemmological laboratory personnel.

5.3.3. Records shall be maintained of each item of equipment and its software significant to the tests, grading and/or internal calibrations performed. The records shall include at least the following:

- date of purchase
- the identity of the item of equipment and its software;
- the manufacturer's and distributors name, type identification, and serial number or other unique identification;
- checks that equipment complies with the specification;
- the current location, where appropriate;
- the manufacturer's instructions, if available, or reference to their location;
- dates, results and copies of reports of all calibrations, adjustments, acceptance criteria and the due date of next calibration;
- the maintenance plan, where appropriate, and maintenance carried out to date;
- any damage, malfunction, modification or repair to the equipment.

5.4. Testing and grading

5.4.1. Where traceability of measurements to SI units is not possible and/or not relevant, the same requirements for traceability to, for example, certified reference materials, agreed methods (see under 6.) and/or consensus standards, are required.

5.5. Reference standards and reference materials

5.5.1. The gemmological laboratory shall have a programme and procedure for the calibration of its reference standards. Reference standards shall be calibrated by a body that can provide traceability. Such reference standards held by the gemmological laboratory shall be used for calibration only and for no other purpose, unless it can be shown that their performance as reference standards would not be invalidated.
5.6. Sampling

5.6.1. The gemmological laboratory shall have a sampling plan and procedures for sampling when batch testing. The sampling plan as well as the sampling procedure shall be available at the location where sampling is undertaken. Sampling plans shall, whenever reasonable, be based on appropriate statistical methods.

5.6.2. Where the customer requires deviations, additions or exclusions from the documented sampling procedure, these shall be recorded in detail with the appropriate sampling data and shall be included in all documents containing test and/or calibration results, and shall be communicated to the appropriate personnel.

5.7. Assuring the quality of test and grading results

5.7.1. The gemmological laboratory shall have quality control procedures for monitoring the validity and results reproducibility of tests, grading and internal calibrations undertaken. The resulting data shall be recorded in such a way that trends are detectable and, where practicable, statistical techniques shall be applied to the reviewing of the results.

5.8. Reporting the results

5.8.1. Each test report shall include at least the following information, unless the gemmological laboratory has valid reasons for not doing so:

- a title (e.g. "Test Report");
- the name and address of the gemmological laboratory, and the location where the tests were carried out, if different from the address of the gemmological laboratory;
- unique identification of the test report (such as the serial number), and on each page an identification in order to ensure that the page is recognised as a part of the test report, and a clear identification of the end of the test report;
- the name and address of the customer (client optional);
- a description of, the condition of, and unambiguous identification of the item(s) tested;
- the date of receipt of the test item(s) where this is critical to the validity and application of the results, and the date(s) of performance of the test;
- the test or grading results with, where appropriate, the units of measurement;
- opinions and interpretations where appropriate and needed; in many cases it may be appropriate to communicate the opinions and interpretations by direct dialogue with the customer: such dialogue should be written down.
- additional information which may be required by specific methods, customers or groups of customers;
- the name(s), function(s) and signature(s) or equivalent identification of person(s) authorising the test report or the name of the legal entity.
5.8.2. In the case of transmission of test results by telephone, telex, facsimile or other electronic or electromagnetic means, the guidelines of this CIBJO Gemmological Laboratory Book shall be met.

5.8.3. The format of the report shall be designed to accommodate each result obtained and to minimise the possibility of misunderstanding or misuse. The headings should be standardized as far as possible.

5.8.4. The report should have suitable security measures, such as a hologram or embossed seal, to minimise potential for fraud.

5.8.5. Copies of reports, working notes, etc. shall be retained in a secure manner for at least 10 years, or longer if local regulations require.

5.9. Amendments to test reports

5.9.1. Material amendments to a test report after issue shall be made only in the form of a further document, or data transfer, which includes the statement: “Supplement to Test Report, serial number … or an equivalent form of wording. When it is necessary to issue a complete new report, this shall be uniquely identified and shall contain a reference to the original that it replaces.

6. Test method protocol

Required test methods are listed, which shall be applied to correctly identify the gem material stated. The listed test method is mandatory, unless a remark indicates otherwise. Definitions of the test methods are listed under 6.3. and the indicated key references on which the protocol is based, are given under 6.4.

6.1. Test methods gemstones

6.1.1. Actinolite

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td>Cat’s-eye</td>
</tr>
<tr>
<td>Phenomena</td>
<td></td>
</tr>
<tr>
<td>Refractometer (refractive index)</td>
<td></td>
</tr>
<tr>
<td>Hydrostatic weighing (specific gravity)</td>
<td></td>
</tr>
<tr>
<td>Raman spectroscopy</td>
<td>If other tests are inconclusive</td>
</tr>
<tr>
<td>XRD</td>
<td>If other tests are inconclusive</td>
</tr>
</tbody>
</table>

References
Burns and Greaves (1971); Crowningshield (1969); Fryer (1993a); Hietanen (1971); Ishida et al. (2002); Lucas (1974); Mustard (1992); Pough (1987); Smelik et al. (1991); Skogby and Annersten (1985); Washington and Merwin (1923)

Special attention: dye

6.1.2. Alexandrite
### Required Test method	Remark
Microscope |
Phenomena | Cat's-eye, colour-change
Refractometer (refractive index) |
Spectroscope |
FTIR(-NIR) spectroscopy |
Colour call | Clear colour-change
Clarity enhancement check/extent |

References

Special attention: clarity enhancement, synthetics, clear colour-change

6.1.3. Amblygonite

Required Test method	Remark
Microscope |
Refractometer (refractive index) |
Hydrostatic weighing (specific gravity) |
Raman spectroscopy |
XRD | If other tests are inconclusive

References

6.1.4. Ammonite

Required Test method	Remark
Microscope |
Refractometer (refractive index) |
Hydrostatic weighing (specific gravity) |
Raman spectroscopy |
XRD | If other tests are inconclusive

References
6.1.5. Anatase

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td></td>
</tr>
<tr>
<td>Refractometer (refractive index)</td>
<td></td>
</tr>
<tr>
<td>Hydrostatic weighing (specific gravity)</td>
<td></td>
</tr>
<tr>
<td>EDXRF chemistry</td>
<td></td>
</tr>
<tr>
<td>Raman spectroscopy</td>
<td></td>
</tr>
<tr>
<td>XRD</td>
<td>If other tests are inconclusive</td>
</tr>
</tbody>
</table>

References

6.1.6. Andalusite

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td></td>
</tr>
<tr>
<td>Phenomena</td>
<td>Cat’s-eye</td>
</tr>
<tr>
<td>Refractometer (refractive index)</td>
<td></td>
</tr>
<tr>
<td>Hydrostatic weighing (specific gravity)</td>
<td></td>
</tr>
<tr>
<td>Dichroscope (pleochroism)</td>
<td></td>
</tr>
<tr>
<td>Spectroscopy</td>
<td></td>
</tr>
<tr>
<td>XRD</td>
<td>If other tests are inconclusive</td>
</tr>
</tbody>
</table>

References

6.1.7. Apatite

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td></td>
</tr>
<tr>
<td>Phenomena</td>
<td>Cat’s-eye, colour-change</td>
</tr>
<tr>
<td>Refractometer (refractive index)</td>
<td></td>
</tr>
<tr>
<td>Hydrostatic weighing</td>
<td></td>
</tr>
</tbody>
</table>
6.1.8. Aquamarine

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td></td>
</tr>
<tr>
<td>Phenomena</td>
<td>Cat’s-eye</td>
</tr>
<tr>
<td>Refractometer (refractive index)</td>
<td></td>
</tr>
<tr>
<td>Hydrostatic weighing (specific gravity)</td>
<td>If RI not possible (rough)</td>
</tr>
<tr>
<td>Dichroscope</td>
<td></td>
</tr>
<tr>
<td>Spectroscope</td>
<td></td>
</tr>
<tr>
<td>EDXRF chemistry</td>
<td>If synthetic or irradiation is suspected</td>
</tr>
<tr>
<td>Colour call</td>
<td></td>
</tr>
<tr>
<td>Clarity enhancement check/extent</td>
<td></td>
</tr>
</tbody>
</table>

References

Special attention: heat treatment, irradiation (Maxixe), clarity enhancement, coatings, synthetics

6.1.9. Aragonite

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td></td>
</tr>
<tr>
<td>Refractometer (refractive index)</td>
<td></td>
</tr>
<tr>
<td>Hydrostatic weighing (specific gravity)</td>
<td></td>
</tr>
<tr>
<td>Raman spectroscopy</td>
<td></td>
</tr>
</tbody>
</table>
If other tests are inconclusive

References
Brink and van der Berg (2005), Chatgeiner et al. (2000), Chave and Schmalz (1966), Checa et al.
and Fritsch (1993), Koivula et al. (1992), Komatsu et al. (1993), Konishi and Saki (1972), Korago
et al. (1978), Low and Ziera (1972), Ma et al. (2007), MacDonald (1956), Makovicky and Karup-
(1988), Ronneberg et al. (1979b), Sen et al. (1994), Soldati et al. (2008), Steinens (1982), Utros et
et al. (2009)

Special attention: dye

6.1.10. Axinite

Required Test method	Remark
Microscope |
Refractometer (refractive index) |
Hydrostatic weighing (specific gravity) |
Dichroscope (pleochroism) |
Spectroscope |
Raman spectroscopy | If other tests are inconclusive
XRD | If other tests are inconclusive

References
Andreozzi et al. (2000a,b), Cassedanne and Cassedanne (1977), Cassedanne et al. (1983),
(1972), Frost et al. (2006), Hanni (1982), Jobbins et al. (1975), Kalachev (1993), Koivula and
Kammerling (1992), Lumpkin and Ribbe (1979), Peacock (1937, 1938), Pinet et al. (1992), Pohl et

6.1.11. Benitoite

Required Test method	Remark
Microscope |
Refractometer (refractive index) | Higher index may exceed limit refractometer
Hydrostatic weighing (specific gravity) |
Dichroscope (pleochroism) |
Long-wave UV fluorescence |
Short-wave UV fluorescence |
Raman spectroscopy | If other tests are inconclusive

References
Benson (1960), Brown (1997), Crowningshield (1960a,b), Frazier and Frazier (1990a), Galt et al.
Launer (1952), Mais et al. (1997), Liddicoat (1963, 1967a, 1968), Louderback (1907), Mitchell
(1980), Pinet et al. (1992), Rase and Roy (1955), Zachariasen (1930).

6.1.12. Beryl (yellow, colourless, pink, red)
6.1.13. Beryllonite

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td></td>
</tr>
<tr>
<td>Refractometer (refractive index)</td>
<td></td>
</tr>
<tr>
<td>Hydrostatic weighing (specific gravity)</td>
<td></td>
</tr>
<tr>
<td>Raman spectroscopy</td>
<td>If other tests are inconclusive</td>
</tr>
<tr>
<td>XRD</td>
<td>If other tests are inconclusive</td>
</tr>
</tbody>
</table>

References

Special attention: clarity enhancement, synthetics

6.1.14. Brazilianite

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td></td>
</tr>
<tr>
<td>Refractometer (refractive index)</td>
<td></td>
</tr>
<tr>
<td>Hydrostatic weighing (specific gravity)</td>
<td></td>
</tr>
</tbody>
</table>

References

6.1.15. Calcite

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td></td>
</tr>
<tr>
<td>Refractometer (refractive index)</td>
<td></td>
</tr>
<tr>
<td>Hydrostatic weighing</td>
<td></td>
</tr>
</tbody>
</table>
(specific gravity)

FTIR(-NIR)
If other tests are inconclusive

Raman spectroscopy
If other tests are inconclusive

References

Special attention: fragile, dye, coatings

6.1.16. Chalcedony

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td></td>
</tr>
<tr>
<td>Refractometer (refractive index)</td>
<td></td>
</tr>
<tr>
<td>Hydrostatic weighing (specific gravity)</td>
<td></td>
</tr>
<tr>
<td>Chelsea Colour Filter</td>
<td></td>
</tr>
<tr>
<td>Spectroscope</td>
<td>Green variety</td>
</tr>
<tr>
<td>EDXRF chemistry</td>
<td>Green variety</td>
</tr>
<tr>
<td>Raman spectroscopy</td>
<td>If other tests are inconclusive</td>
</tr>
</tbody>
</table>

References

Special attention: dye

6.1.17. Charoite

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td></td>
</tr>
<tr>
<td>Refractometer (refractive index)</td>
<td></td>
</tr>
<tr>
<td>Hydrostatic weighing (specific gravity)</td>
<td></td>
</tr>
</tbody>
</table>

References

6.1.18. Chrysoberyl

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td></td>
</tr>
<tr>
<td>Refractometer (refractive index)</td>
<td></td>
</tr>
<tr>
<td>Hydrostatic weighing (specific gravity)</td>
<td></td>
</tr>
</tbody>
</table>

References

© CIBJO 2016 All rights reserved
6.1.19. Chrysocolla

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td></td>
</tr>
<tr>
<td>Phenomena</td>
<td></td>
</tr>
<tr>
<td>Refractometer (refractive index)</td>
<td></td>
</tr>
<tr>
<td>Hydrostatic weighing (specific gravity)</td>
<td></td>
</tr>
<tr>
<td>Spectroscope</td>
<td></td>
</tr>
<tr>
<td>EDXRF chemistry</td>
<td></td>
</tr>
<tr>
<td>Raman spectroscopy</td>
<td></td>
</tr>
<tr>
<td>XRD</td>
<td></td>
</tr>
</tbody>
</table>

References

Special attention: irradiation, synthetics

6.1.20. Clinohumite

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td></td>
</tr>
<tr>
<td>Refractometer (refractive index)</td>
<td></td>
</tr>
</tbody>
</table>

References

Special attention: dyed (with Cu)
Hydrostatic weighing (specific gravity)	If other tests are inconclusive
Raman spectroscopy | If other tests are inconclusive
XRD | If other tests are inconclusive

References

6.1.21. Danburite

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td></td>
</tr>
<tr>
<td>Refractometer (refractive index)</td>
<td></td>
</tr>
<tr>
<td>Hydrostatic weighing (specific gravity)</td>
<td></td>
</tr>
<tr>
<td>Long-wave UV fluorescence</td>
<td></td>
</tr>
<tr>
<td>Raman spectroscopy</td>
<td>If other tests are inconclusive</td>
</tr>
</tbody>
</table>

References

6.1.22. Diamond (colourless) — identification only

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td></td>
</tr>
<tr>
<td>Spectroscope</td>
<td></td>
</tr>
<tr>
<td>Polariscope</td>
<td></td>
</tr>
<tr>
<td>Long-wave UV fluorescence</td>
<td></td>
</tr>
<tr>
<td>Long-wave UV phosphorescence</td>
<td></td>
</tr>
<tr>
<td>Short-wave UV fluorescence</td>
<td></td>
</tr>
<tr>
<td>Short-wave UV phosphorescence</td>
<td></td>
</tr>
<tr>
<td>Diamondview</td>
<td>Possibly synthetic</td>
</tr>
<tr>
<td>FTIR(-NIR) spectroscopy</td>
<td></td>
</tr>
<tr>
<td>EDXRF chemistry</td>
<td>As needed</td>
</tr>
<tr>
<td>PL spectroscopy</td>
<td></td>
</tr>
</tbody>
</table>

References
Special attention: irradiation, HP-HT, coatings, clarity enhancement, synthetics For diamond grading, see the PAS document

6.1.23. Diamond (coloured)

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td></td>
</tr>
<tr>
<td>Polariscope</td>
<td></td>
</tr>
<tr>
<td>Long-wave UV fluorescence</td>
<td></td>
</tr>
<tr>
<td>Long-wave UV phosphorescence</td>
<td></td>
</tr>
<tr>
<td>Diamondview</td>
<td></td>
</tr>
<tr>
<td>UV-Visible(-NIR) spectroscopy</td>
<td>Low temperature</td>
</tr>
<tr>
<td>FTIR(-NIR) spectroscopy</td>
<td>As needed</td>
</tr>
<tr>
<td>EDXRF chemistry</td>
<td></td>
</tr>
<tr>
<td>PL spectroscopy</td>
<td></td>
</tr>
<tr>
<td>Geiger counter</td>
<td></td>
</tr>
<tr>
<td>Clarity enhancement check</td>
<td>Green and black diamonds</td>
</tr>
</tbody>
</table>

References

Special attention: HP-HT, coatings, clarity enhancement, synthetics

6.1.24. Diaspore

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td></td>
</tr>
<tr>
<td>Phenomena</td>
<td>Colour-change</td>
</tr>
<tr>
<td>Refractometer (refractive index)</td>
<td></td>
</tr>
<tr>
<td>Hydrostatic weighing (specific gravity)</td>
<td></td>
</tr>
<tr>
<td>Spectroscope</td>
<td></td>
</tr>
</tbody>
</table>
6.1.25. Diopside

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td></td>
</tr>
<tr>
<td>Phenomena</td>
<td></td>
</tr>
<tr>
<td>Cat’s-eye, star</td>
<td></td>
</tr>
<tr>
<td>Refractometer (refractive index)</td>
<td></td>
</tr>
<tr>
<td>Hydrostatic weighing (specific gravity)</td>
<td></td>
</tr>
<tr>
<td>Spectroscope</td>
<td></td>
</tr>
<tr>
<td>Raman spectroscopy</td>
<td>If other tests are inconclusive</td>
</tr>
<tr>
<td>XRD</td>
<td>If other tests are inconclusive</td>
</tr>
</tbody>
</table>

References

6.1.26. Dioptase

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td></td>
</tr>
<tr>
<td>Refractometer (refractive index)</td>
<td></td>
</tr>
<tr>
<td>Hydrostatic weighing (specific gravity)</td>
<td></td>
</tr>
<tr>
<td>Spectroscope</td>
<td></td>
</tr>
<tr>
<td>EDXRF chemistry</td>
<td>If other tests are inconclusive</td>
</tr>
<tr>
<td>Raman spectroscopy</td>
<td>If other tests are inconclusive</td>
</tr>
<tr>
<td>XRD</td>
<td>If other tests are inconclusive</td>
</tr>
</tbody>
</table>

References

6.1.27. Dolomite

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

References

Microscope
Refractometer (refractive index)
Hydrostatic weighing (specific gravity)
FTIR(-NIR) spectroscopy
EDXRF chemistry
Raman spectroscopy
XRD

References

Special attention: dye

6.1.28. Dumortierite

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td></td>
</tr>
<tr>
<td>Refractometer (refractive index)</td>
<td></td>
</tr>
<tr>
<td>Hydrostatic weighing (specific gravity)</td>
<td></td>
</tr>
<tr>
<td>Raman spectroscopy</td>
<td></td>
</tr>
<tr>
<td>XRD</td>
<td>If other tests are inconclusive</td>
</tr>
</tbody>
</table>

References
Alexander et al. (1986), Applin and Hicks (1987), Bank (1979), Beukes et al. (1987), Cassedanne and Franco (1966), Corwningshield (1964), Goreva et al. (2001), Koivula et al. (1992), Ostwald (1964)

6.1.29. Ekanite

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geiger counter or dosimeter (µS/h)</td>
<td></td>
</tr>
<tr>
<td>Safe storage</td>
<td></td>
</tr>
<tr>
<td>Microscope</td>
<td></td>
</tr>
<tr>
<td>Phenomena</td>
<td>Star</td>
</tr>
<tr>
<td>Refractometer (refractive index)</td>
<td></td>
</tr>
<tr>
<td>Hydrostatic weighing (specific gravity)</td>
<td></td>
</tr>
<tr>
<td>Raman spectroscopy</td>
<td></td>
</tr>
<tr>
<td>XRD</td>
<td>If other tests are inconclusive</td>
</tr>
</tbody>
</table>

References

Special attention: radioactive
6.1.30. Emerald

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td></td>
</tr>
<tr>
<td>Phenomena</td>
<td>Star, Cat’s-eye, trapiche</td>
</tr>
<tr>
<td>Refractometer (refractive index)</td>
<td></td>
</tr>
<tr>
<td>Hydrostatic weighing (specific gravity)</td>
<td>If loose and other tests inconclusive</td>
</tr>
<tr>
<td>Chelsea colour filter</td>
<td></td>
</tr>
<tr>
<td>Spectroscope</td>
<td></td>
</tr>
<tr>
<td>Long-wave UV fluorescence</td>
<td></td>
</tr>
<tr>
<td>UV-Visible(-NIR) spectroscopy</td>
<td>Origin</td>
</tr>
<tr>
<td>FTIR(-NIR) spectroscopy</td>
<td>Synthetic/natural and filler ID</td>
</tr>
<tr>
<td>EDXRF chemistry</td>
<td>Origin</td>
</tr>
<tr>
<td>Raman spectroscopy</td>
<td>Only for filler ID</td>
</tr>
<tr>
<td>LA-ICP-MS spectroscopy</td>
<td>If necessary for origin</td>
</tr>
<tr>
<td>Colour call</td>
<td></td>
</tr>
<tr>
<td>Clarity enhancement check/extent</td>
<td></td>
</tr>
</tbody>
</table>

References

Special attention: clarity enhancement (also cavity and wide fracture filling), synthetics, coating and dye

6.1.31. Enstatite
<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td>Phenomena Star, Cat’s-eye</td>
</tr>
<tr>
<td>Refractometer (refractive index)</td>
<td>Hydrostatic weighing (specific gravity) If loose and other tests inconclusive</td>
</tr>
<tr>
<td>Spectroscopy</td>
<td>Raman spectroscopy If other tests inconclusive</td>
</tr>
<tr>
<td>XRD</td>
<td>If other tests inconclusive</td>
</tr>
</tbody>
</table>

References

6.1.32. Epidote

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td>Phenomena Cat’s-eye, adularescence, aventurescence</td>
</tr>
<tr>
<td>Refractometer (refractive index)</td>
<td>Hydrostatic weighing (specific gravity) If loose and other tests inconclusive</td>
</tr>
<tr>
<td>Spectroscopy</td>
<td>Raman spectroscopy If other tests inconclusive</td>
</tr>
<tr>
<td>XRD</td>
<td>If other tests inconclusive</td>
</tr>
</tbody>
</table>

References

6.1.33. Feldspar – orthoclase, moonstone, microcline, albite, oligoclase, bytownite

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td>Phenomena Cat’s-eye, adularescence, aventurescence</td>
</tr>
<tr>
<td>Refractometer (refractive index)</td>
<td>Hydrostatic weighing (specific gravity) If loose and other tests inconclusive</td>
</tr>
<tr>
<td>EDXRF chemistry</td>
<td>If needed for variety separation</td>
</tr>
<tr>
<td>LA-ICP-MS or SEM-EDS chemistry</td>
<td>Raman spectroscopy If other tests inconclusive</td>
</tr>
<tr>
<td>XRD</td>
<td>If other tests inconclusive</td>
</tr>
</tbody>
</table>
6.1.34. **Feldspar – labradorite, andesine**

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td></td>
</tr>
<tr>
<td>Phenomena</td>
<td>Labradorescence, aventurescence</td>
</tr>
<tr>
<td>Hydrostatic weighing</td>
<td>If loose and other tests inconclusive</td>
</tr>
<tr>
<td>Phenomena (specific gravity)</td>
<td></td>
</tr>
<tr>
<td>EDXRF chemistry</td>
<td></td>
</tr>
<tr>
<td>LA-ICP-MS chemistry</td>
<td></td>
</tr>
<tr>
<td>Raman spectroscopy</td>
<td>If other tests inconclusive</td>
</tr>
<tr>
<td>XRD</td>
<td>If other tests inconclusive</td>
</tr>
</tbody>
</table>

References

Special attention: fragile, easy cleavage

6.1.35. **Fluorite**

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td></td>
</tr>
<tr>
<td>Phenomena</td>
<td>Colour-change</td>
</tr>
<tr>
<td>Hydrostatic weighing (specific gravity)</td>
<td>If loose and other tests inconclusive</td>
</tr>
<tr>
<td>Polariscope</td>
<td></td>
</tr>
<tr>
<td>Long-wave UV fluorescence</td>
<td></td>
</tr>
<tr>
<td>Short-wave UV fluorescence</td>
<td></td>
</tr>
<tr>
<td>Raman spectroscopy</td>
<td>If other tests inconclusive</td>
</tr>
<tr>
<td>XRD</td>
<td>If other tests inconclusive</td>
</tr>
</tbody>
</table>

References

Special attention: fragile, easy cleavage
6.1.36. Forsterite

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td></td>
</tr>
<tr>
<td>Refractometer (refractive index)</td>
<td></td>
</tr>
<tr>
<td>dichroscope</td>
<td></td>
</tr>
<tr>
<td>spectroscopy</td>
<td></td>
</tr>
<tr>
<td>Long-wave UV fluorescence</td>
<td></td>
</tr>
<tr>
<td>Short-wave UV fluorescence</td>
<td></td>
</tr>
<tr>
<td>FTIR(-NIR) spectroscopy</td>
<td></td>
</tr>
<tr>
<td>EDXRF chemistry</td>
<td></td>
</tr>
<tr>
<td>Raman spectroscopy</td>
<td></td>
</tr>
</tbody>
</table>

References

Special attention: synthetic

6.1.37. Gahnospinel

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td></td>
</tr>
<tr>
<td>Refractometer (refractive index)</td>
<td>May be outside upper range</td>
</tr>
<tr>
<td>Hydrostatic weighing (specific gravity)</td>
<td></td>
</tr>
<tr>
<td>EDXRF chemistry</td>
<td></td>
</tr>
<tr>
<td>Raman spectroscopy</td>
<td></td>
</tr>
<tr>
<td>XRD</td>
<td>If other tests are inconclusive</td>
</tr>
</tbody>
</table>

References

6.1.38. Garnet – Pyrope, Almandine, Spessartine, Grossular (hessonite, tsavorite), Andradite (demantoid), Uvarovite

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td></td>
</tr>
<tr>
<td>Phenomena</td>
<td>Colour-change, star</td>
</tr>
<tr>
<td>Refractometer (refractive index)</td>
<td>May be outside upper range</td>
</tr>
<tr>
<td>Hydrostatic weighing (specific gravity)</td>
<td></td>
</tr>
<tr>
<td>EDXRF chemistry</td>
<td></td>
</tr>
<tr>
<td>Raman spectroscopy</td>
<td>XRD</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----</td>
</tr>
</tbody>
</table>

References

Special attention: heat treatment (demantoid)

6.1.39. Gypsum

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td></td>
</tr>
<tr>
<td>Phenomena</td>
<td>Satin spar, cat’s-eye</td>
</tr>
<tr>
<td>Refractometer (refractive index)</td>
<td></td>
</tr>
<tr>
<td>Hydrostatic weighing (specific gravity)</td>
<td></td>
</tr>
<tr>
<td>Raman spectroscopy</td>
<td></td>
</tr>
<tr>
<td>XRD</td>
<td>If other tests are inconclusive</td>
</tr>
</tbody>
</table>

References

Special attention: soft material, easy cleavage

6.1.40. Hauyn

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td></td>
</tr>
<tr>
<td>Refractometer (refractive index)</td>
<td></td>
</tr>
<tr>
<td>Hydrostatic weighing (specific gravity)</td>
<td></td>
</tr>
<tr>
<td>Long-wave UV fluorescence</td>
<td></td>
</tr>
<tr>
<td>Raman spectroscopy</td>
<td></td>
</tr>
<tr>
<td>XRD</td>
<td>If other tests are inconclusive</td>
</tr>
</tbody>
</table>

References

6.1.41. Hematite

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td></td>
</tr>
<tr>
<td>Magnet (magnetic reaction)</td>
<td></td>
</tr>
<tr>
<td>Hydrostatic weighing (specific gravity)</td>
<td></td>
</tr>
<tr>
<td>EDXRF chemistry</td>
<td></td>
</tr>
</tbody>
</table>
Raman spectroscopy
XRD If other tests are inconclusive

References

Special attention: various imitations, non-magnetic and magnetic. It may not be possible to separate from manufactured material.

6.1.42. **Idocrase (Vesuvianite)**

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td></td>
</tr>
<tr>
<td>Refractometer (refractive index)</td>
<td></td>
</tr>
<tr>
<td>Hydrostatic weighing (specific gravity)</td>
<td></td>
</tr>
<tr>
<td>Spectroscope</td>
<td></td>
</tr>
<tr>
<td>Raman spectroscopy</td>
<td>If other tests are inconclusive</td>
</tr>
<tr>
<td>XRD</td>
<td>If other tests are inconclusive</td>
</tr>
</tbody>
</table>

References

6.1.43. **Iolite (Cordierite)**

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td></td>
</tr>
<tr>
<td>Phenomena</td>
<td>Cat’s-eye, bloodshot</td>
</tr>
<tr>
<td>Refractometer (refractive index)</td>
<td></td>
</tr>
<tr>
<td>Hydrostatic weighing (specific gravity)</td>
<td></td>
</tr>
<tr>
<td>Dichrooscope</td>
<td></td>
</tr>
</tbody>
</table>

References

6.1.44. **Jadeite – green, white, black, lavender**

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td></td>
</tr>
<tr>
<td>Refractometer (refractive index)</td>
<td></td>
</tr>
<tr>
<td>Hydrostatic weighing (specific gravity)</td>
<td>When possible</td>
</tr>
<tr>
<td>Chelsea colour filter</td>
<td></td>
</tr>
<tr>
<td>Spectroscope</td>
<td></td>
</tr>
<tr>
<td>Long-wave UV fluorescence</td>
<td></td>
</tr>
<tr>
<td>FTIR(-NIR) spectroscopy</td>
<td>EDXRF chemistry</td>
</tr>
<tr>
<td>------------------------</td>
<td>----------------</td>
</tr>
</tbody>
</table>

References

Special attention: other jadeite-like minerals or rocks, omphacite, dye, resin, impregnation, wax, plastic coating

6.1.45. Jasper

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td></td>
</tr>
<tr>
<td>Hydrostatic weighing (specific gravity)</td>
<td></td>
</tr>
<tr>
<td>Raman spectroscopy</td>
<td>If other tests are inconclusive</td>
</tr>
</tbody>
</table>

References

6.1.46. Jeremejevite

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td></td>
</tr>
<tr>
<td>Refractometer (refractive index)</td>
<td></td>
</tr>
<tr>
<td>Hydrostatic weighing (specific gravity)</td>
<td></td>
</tr>
<tr>
<td>Raman spectroscopy</td>
<td>If other tests are inconclusive</td>
</tr>
</tbody>
</table>

References

6.1.47. Kornerupine

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
</table>

References

© CIBJO 2016 All rights reserved

GEMMOLOGICAL COMMISSION 2016 — 1

34
Microscope

<table>
<thead>
<tr>
<th>Phenomena</th>
<th>Cat’s eye</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refractometer (refractive index)</td>
<td></td>
</tr>
<tr>
<td>Hydrostatic weighing (specific gravity)</td>
<td></td>
</tr>
<tr>
<td>Polariscope</td>
<td>Small 2V angle</td>
</tr>
<tr>
<td>Raman spectroscopy</td>
<td>If other tests are inconclusive</td>
</tr>
</tbody>
</table>

References

6.1.48. Kyanite

Required Test method

<table>
<thead>
<tr>
<th>Method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td>Cat’s eye, colour change</td>
</tr>
<tr>
<td>Refractometer (refractive index)</td>
<td></td>
</tr>
<tr>
<td>Hydrostatic weighing (specific gravity)</td>
<td></td>
</tr>
<tr>
<td>Raman spectroscopy</td>
<td>If other tests are inconclusive</td>
</tr>
</tbody>
</table>

References

6.1.49. Lapis Lazuli

Required Test method

<table>
<thead>
<tr>
<th>Method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td>Thermal reaction test, acetone</td>
</tr>
<tr>
<td>Refractometer (refractive index)</td>
<td></td>
</tr>
<tr>
<td>Hydrostatic weighing (specific gravity)</td>
<td></td>
</tr>
<tr>
<td>Long-wave UV fluorescence</td>
<td></td>
</tr>
<tr>
<td>Raman spectroscopy</td>
<td>Selective components</td>
</tr>
<tr>
<td>XRD</td>
<td>If other tests are inconclusive</td>
</tr>
</tbody>
</table>

References

Special attention: dye, coatings, impregnation, wax, ‘synthetics’, imitations
6.1.50. Magnesite

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td></td>
</tr>
<tr>
<td>Refractometer (refractive index)</td>
<td></td>
</tr>
<tr>
<td>Hydrostatic weighing (specific gravity)</td>
<td></td>
</tr>
<tr>
<td>Long-wave UV fluorescence</td>
<td></td>
</tr>
<tr>
<td>FTIR(-NIR) spectroscopy</td>
<td></td>
</tr>
<tr>
<td>EDXRF chemistry</td>
<td></td>
</tr>
<tr>
<td>Raman spectroscopy</td>
<td></td>
</tr>
<tr>
<td>XRD</td>
<td>If other tests are inconclusive</td>
</tr>
</tbody>
</table>

References

Special attention: crystalline variety very soft, massive variety often used with dye

6.1.51. Malachite

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td></td>
</tr>
<tr>
<td>Refractometer (refractive index)</td>
<td></td>
</tr>
<tr>
<td>Hydrostatic weighing (specific gravity)</td>
<td></td>
</tr>
<tr>
<td>EDXRF chemistry</td>
<td>If other tests are inconclusive</td>
</tr>
<tr>
<td>Raman spectroscopy</td>
<td>If other tests are inconclusive</td>
</tr>
<tr>
<td>XRD</td>
<td>If other tests are inconclusive</td>
</tr>
</tbody>
</table>

References

Special attention: reconstructed, impregnated, wax, synthetic

6.1.52. Maw-sit-sit

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td></td>
</tr>
<tr>
<td>Refractometer (refractive index)</td>
<td></td>
</tr>
<tr>
<td>Hydrostatic weighing (specific gravity)</td>
<td></td>
</tr>
<tr>
<td>Raman spectroscopy</td>
<td>Selective components</td>
</tr>
</tbody>
</table>

References

6.1.53. Moldavite

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td></td>
</tr>
<tr>
<td>Refractometer (refractive index)</td>
<td></td>
</tr>
<tr>
<td>Hydrostatic weighing (specific gravity)</td>
<td></td>
</tr>
<tr>
<td>FTIR(-NIR) spectroscopy</td>
<td></td>
</tr>
<tr>
<td>EDXRF chemistry</td>
<td></td>
</tr>
</tbody>
</table>

References

Special attention: artificial glass

6.1.54. Nephrite

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td></td>
</tr>
<tr>
<td>Refractometer (refractive index)</td>
<td></td>
</tr>
<tr>
<td>Hydrostatic weighing (specific gravity)</td>
<td></td>
</tr>
<tr>
<td>Raman spectroscopy</td>
<td></td>
</tr>
</tbody>
</table>

References

Special attention: dye

6.1.55. Obsidian

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td></td>
</tr>
<tr>
<td>Refractometer (refractive index)</td>
<td></td>
</tr>
<tr>
<td>FTIR(-NIR) spectroscopy</td>
<td></td>
</tr>
<tr>
<td>EDXRF chemistry</td>
<td></td>
</tr>
</tbody>
</table>

References

Acquafredda et al., 1999; Baugh and Nelson, 1987; Bavay et al., 2000; Bellot-Gurlet et al., 2008; Bellot-Gurlet et al., 2005; Bigazzi et al., 1992; Bigazzi et al., 1986; Biró, 2004; Bunney, 1985; Calligaro, 2008; Cohen, 1958; Craig et al., 2010; Craig et al., 2007; Crowingshield, 1975; Faulques et al., 2001; Glascock, 2002; Henn, 1995; Holzhey, 1996; Hughes, 1982; Hyrsl and Žáček, 1999; Johnson and Koivula, 1997, 1998; Kelloway et al., 2010; Koivula and Fritsch, 1993a, b; Miller, 2006; Millhauser et al., 2011; Moses et al., 1998; OKeefe, 1984; Pereira et al., 2001; Poupeau et al., 2010; Rosen et al., 2005; Rozsa et al., 2006; Sheppard et al., 2011; Sinkankas, 1996; Spriggs et al., 2011; Webster, 1949; Weiner, 1983; Williams-Thorpe, 1995; Zook, 1973

Special attention: artificial glass
6.1.56. **Opal**

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td></td>
</tr>
<tr>
<td>Phenomena</td>
<td>Play of colour, Cat’s-eye (rare), Star (rare)</td>
</tr>
<tr>
<td>Refractometer (refractive index)</td>
<td></td>
</tr>
<tr>
<td>Hydrostatic weighing (specific gravity)</td>
<td></td>
</tr>
<tr>
<td>Polariscope</td>
<td></td>
</tr>
<tr>
<td>Long-wave UV fluorescence</td>
<td></td>
</tr>
<tr>
<td>Long-wave UV phosphorescence</td>
<td></td>
</tr>
<tr>
<td>Short-wave UV fluorescence</td>
<td></td>
</tr>
<tr>
<td>Short-wave UV phosphorescence</td>
<td></td>
</tr>
<tr>
<td>UV-Visible (-NIR) spectroscopy</td>
<td>If dye is suspected</td>
</tr>
<tr>
<td>FTIR (-NIR) spectroscopy</td>
<td></td>
</tr>
</tbody>
</table>

References

Special attention: sugar and smoke treatments, dye, impregnation, synthetics

6.1.57. **Pectolite**

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td></td>
</tr>
<tr>
<td>Phenomena</td>
<td>Cat’s eye (rare)</td>
</tr>
<tr>
<td>Refractometer (refractive index)</td>
<td></td>
</tr>
<tr>
<td>Hydrostatic weighing (specific gravity)</td>
<td></td>
</tr>
<tr>
<td>Long-wave UV fluorescence</td>
<td></td>
</tr>
<tr>
<td>Long-wave UV phosphorescence</td>
<td></td>
</tr>
<tr>
<td>Short-wave UV fluorescence</td>
<td></td>
</tr>
<tr>
<td>Short-wave UV phosphorescence</td>
<td></td>
</tr>
<tr>
<td>EDXRF chemistry</td>
<td></td>
</tr>
<tr>
<td>Raman spectroscopy</td>
<td>If other tests are inconclusive</td>
</tr>
</tbody>
</table>
References

6.1.58. Peridot

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td></td>
</tr>
<tr>
<td>Refractometer (refractive index)</td>
<td></td>
</tr>
<tr>
<td>Spectroscope</td>
<td></td>
</tr>
</tbody>
</table>

References

Special attention: may be damaged by acids

6.1.59. Petalite

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td></td>
</tr>
<tr>
<td>Refractometer (refractive index)</td>
<td></td>
</tr>
<tr>
<td>Hydrostatic weighing (specific gravity)</td>
<td></td>
</tr>
<tr>
<td>Polariscope</td>
<td></td>
</tr>
<tr>
<td>Raman spectroscopy</td>
<td></td>
</tr>
</tbody>
</table>

References

6.1.60. Phenakite

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td></td>
</tr>
<tr>
<td>Refractometer (refractive index)</td>
<td></td>
</tr>
<tr>
<td>Hydrostatic weighing</td>
<td></td>
</tr>
</tbody>
</table>
Phosphophyllite

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td></td>
</tr>
<tr>
<td>Refractometer (refractive index)</td>
<td></td>
</tr>
<tr>
<td>Hydrostatic weighing (specific gravity)</td>
<td></td>
</tr>
<tr>
<td>Short-wave UV fluorescence</td>
<td></td>
</tr>
<tr>
<td>EDXRF chemistry</td>
<td></td>
</tr>
<tr>
<td>Raman spectroscopy</td>
<td></td>
</tr>
</tbody>
</table>

References

Plastic

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td></td>
</tr>
<tr>
<td>Refractometer (refractive index)</td>
<td></td>
</tr>
<tr>
<td>Hydrostatic weighing (specific gravity)</td>
<td></td>
</tr>
<tr>
<td>Polariscope</td>
<td></td>
</tr>
<tr>
<td>Long-wave UV fluorescence</td>
<td></td>
</tr>
<tr>
<td>Short-wave UV fluorescence</td>
<td></td>
</tr>
<tr>
<td>FTIR(-NIR) spectroscopy</td>
<td></td>
</tr>
</tbody>
</table>

References

6.1.63. **Prehnite**

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td></td>
</tr>
<tr>
<td>Refractometer (refractive index)</td>
<td></td>
</tr>
<tr>
<td>Hydrostatic weighing (specific gravity)</td>
<td></td>
</tr>
<tr>
<td>Polariscope</td>
<td></td>
</tr>
<tr>
<td>Raman spectroscopy</td>
<td></td>
</tr>
</tbody>
</table>

References

Akizuki 1987; Bank 1975a; Beattie and Brown 1985; Bracewell 1989; Brown and Snow 1981; Crowingshield 1963a, b; Currier and Pohl 2011; Howard 1997; Huber 1975; Liou 1971; Nazarova et al. 1990; Pan et al. 2009; Papike and Zoltai 1967; Pough 1966b, 1997e; Roger 1987; Rohn 1998; van Houten 1971

6.1.64. **Pyrite**

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td></td>
</tr>
<tr>
<td>Hydrostatic weighing (specific gravity)</td>
<td></td>
</tr>
<tr>
<td>Raman spectroscopy</td>
<td></td>
</tr>
<tr>
<td>XRD</td>
<td>If other tests are inconclusive</td>
</tr>
</tbody>
</table>

References

Special attention: marcasite (misnomer), steel imitation

6.1.65. **Quartz (amethyst, citrine, rock crystal, smoky, rose, aventurine, etc.)**

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td></td>
</tr>
<tr>
<td>Phenomena Star</td>
<td></td>
</tr>
<tr>
<td>Refractometer (refractive index)</td>
<td></td>
</tr>
<tr>
<td>Hydrostatic weighing (specific gravity)</td>
<td></td>
</tr>
<tr>
<td>Polariscope</td>
<td></td>
</tr>
<tr>
<td>Immersion In water</td>
<td></td>
</tr>
<tr>
<td>Long-wave UV fluorescence</td>
<td></td>
</tr>
<tr>
<td>Short-wave UV fluorescence</td>
<td></td>
</tr>
<tr>
<td>FTIR(-NIR) spectroscopy</td>
<td></td>
</tr>
</tbody>
</table>
References

Special attention: synthetics, coatings, irradiation, heat treatment, dyed and impregnated (quartzite)

6.1.66. Rhodochrosite

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td></td>
</tr>
<tr>
<td>Refractometer (refractive index)</td>
<td>Upper limit outside range</td>
</tr>
<tr>
<td>Spectroscope</td>
<td></td>
</tr>
<tr>
<td>Long-wave UV fluorescence</td>
<td></td>
</tr>
<tr>
<td>Short-wave UV fluorescence</td>
<td></td>
</tr>
<tr>
<td>EDXRF chemistry</td>
<td></td>
</tr>
<tr>
<td>Raman spectroscopy</td>
<td></td>
</tr>
</tbody>
</table>

References

Special attention: easy cleavage single crystal material

6.1.67. Rhodonite
Required Test method

<table>
<thead>
<tr>
<th>Method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td></td>
</tr>
<tr>
<td>Refractometer (refractive index)</td>
<td></td>
</tr>
<tr>
<td>Spectroscope</td>
<td></td>
</tr>
<tr>
<td>EDXRF chemistry</td>
<td>If other tests are inconclusive</td>
</tr>
<tr>
<td>Raman spectroscopy</td>
<td>If other tests are inconclusive</td>
</tr>
</tbody>
</table>

References

6.1.68. Ruby

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td></td>
</tr>
<tr>
<td>Phenomena</td>
<td>Star</td>
</tr>
<tr>
<td>Immersion</td>
<td>Be diffusion, synthetic</td>
</tr>
<tr>
<td>Refractometer (refractive index)</td>
<td></td>
</tr>
<tr>
<td>Spectroscope</td>
<td></td>
</tr>
<tr>
<td>Long-wave UV fluorescence</td>
<td></td>
</tr>
<tr>
<td>Short-wave UV fluorescence</td>
<td></td>
</tr>
<tr>
<td>DiamondView</td>
<td>Glass filling</td>
</tr>
<tr>
<td>UV-Visible(-NIR) spectroscopy</td>
<td>If necessary for origin</td>
</tr>
<tr>
<td>FTIR(-NIR) spectroscopy</td>
<td></td>
</tr>
<tr>
<td>EDXRF chemistry</td>
<td></td>
</tr>
<tr>
<td>LA-ICP-MS chemistry</td>
<td>Be test heated stones, if necessary for origin</td>
</tr>
<tr>
<td>Residue check and extent</td>
<td>Flux healing</td>
</tr>
<tr>
<td>Colour call</td>
<td></td>
</tr>
<tr>
<td>Clarity enhancement check and extent</td>
<td>Glass filling</td>
</tr>
</tbody>
</table>

References

Special attention: heat treatment, residues, diffusion, (lead) glass filling, dye, synthetics

6.1.69. Sapphire

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td></td>
</tr>
<tr>
<td>Phenomena</td>
<td>Star, colour change</td>
</tr>
<tr>
<td>Immersion</td>
<td>Synthetic, Be diffusion</td>
</tr>
<tr>
<td>Refractometer (refractive index)</td>
<td></td>
</tr>
<tr>
<td>Spectroscope</td>
<td></td>
</tr>
<tr>
<td>Long-wave UV fluorescence</td>
<td></td>
</tr>
<tr>
<td>Short-wave UV fluorescence</td>
<td></td>
</tr>
<tr>
<td>DiamondView</td>
<td></td>
</tr>
<tr>
<td>UV-Visible(-NIR) spectroscopy</td>
<td>Be diffusion, if necessary for origin</td>
</tr>
<tr>
<td>FTIR(-NIR) spectroscopy</td>
<td></td>
</tr>
<tr>
<td>EDXRF chemistry</td>
<td></td>
</tr>
<tr>
<td>LA-ICP-MS chemistry</td>
<td>Be test heated stones, if necessary for origin</td>
</tr>
<tr>
<td>Residue check and extent</td>
<td>Flux healing</td>
</tr>
<tr>
<td>Colour call</td>
<td>e.g., Padparadscha</td>
</tr>
</tbody>
</table>

References

Special attention: heat treatment, diffusion, (lead, cobalt) glass filling, Synthetics

6.1.70. Sapphirine

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td></td>
</tr>
<tr>
<td>Refractometer (refractive index)</td>
<td></td>
</tr>
<tr>
<td>Hydrostatic weighing (specific gravity)</td>
<td></td>
</tr>
<tr>
<td>Dichroscope</td>
<td></td>
</tr>
<tr>
<td>Raman spectroscopy</td>
<td></td>
</tr>
</tbody>
</table>

References

6.1.71. **Saussurite**

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td></td>
</tr>
<tr>
<td>Refractometer (refractive index)</td>
<td></td>
</tr>
<tr>
<td>Hydrostatic weighing (specific gravity)</td>
<td></td>
</tr>
<tr>
<td>Raman spectroscopy</td>
<td></td>
</tr>
</tbody>
</table>

References
Jobbins and Rutland 1974; Scarratt 1987c, e

6.1.72. **Scapolite**

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td></td>
</tr>
<tr>
<td>Phenomena</td>
<td>Cat's-eye</td>
</tr>
<tr>
<td>Refractometer (refractive index)</td>
<td></td>
</tr>
<tr>
<td>Hydrostatic weighing (specific gravity)</td>
<td></td>
</tr>
<tr>
<td>Polariscpoe</td>
<td></td>
</tr>
<tr>
<td>Long-wave UV fluorescence</td>
<td></td>
</tr>
<tr>
<td>Short-wave UV fluorescence</td>
<td></td>
</tr>
<tr>
<td>FTIR(-NIR) spectroscopy</td>
<td>If other results are inconclusive</td>
</tr>
<tr>
<td>Raman spectroscopy</td>
<td></td>
</tr>
</tbody>
</table>

References

6.1.73. **Serpentine – bowenite, williamsite**

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td></td>
</tr>
<tr>
<td>Refractometer (refractive index)</td>
<td></td>
</tr>
<tr>
<td>Hydrostatic weighing (specific gravity)</td>
<td></td>
</tr>
<tr>
<td>FTIR(-NIR) spectroscopy</td>
<td></td>
</tr>
<tr>
<td>Raman spectroscopy</td>
<td></td>
</tr>
</tbody>
</table>

References
6.1.74. **Sinnhalite**

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td></td>
</tr>
<tr>
<td>Refractometer (refractive index)</td>
<td></td>
</tr>
<tr>
<td>Polariscope</td>
<td></td>
</tr>
<tr>
<td>Spectroscope</td>
<td></td>
</tr>
<tr>
<td>FTIR(-NIR) spectroscopy</td>
<td></td>
</tr>
<tr>
<td>Raman spectroscopy</td>
<td>If other tests are inconclusive</td>
</tr>
</tbody>
</table>

References

6.1.75. **Sillimanite**

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td></td>
</tr>
<tr>
<td>Phenomena</td>
<td>Cat’s-eye</td>
</tr>
<tr>
<td>Refractometer (refractive index)</td>
<td></td>
</tr>
<tr>
<td>Hydrostatic weighing (specific gravity)</td>
<td></td>
</tr>
<tr>
<td>Polariscope</td>
<td></td>
</tr>
<tr>
<td>FTIR(-NIR) spectroscopy</td>
<td></td>
</tr>
<tr>
<td>Raman spectroscopy</td>
<td>If other tests are inconclusive</td>
</tr>
</tbody>
</table>

References

Special attention: single crystal has easy cleavage

6.1.76. **Sodalite**

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td></td>
</tr>
<tr>
<td>Refractometer (refractive index)</td>
<td></td>
</tr>
<tr>
<td>Dichroscope</td>
<td></td>
</tr>
<tr>
<td>Spectroscope</td>
<td></td>
</tr>
<tr>
<td>Long-wave UV fluorescence</td>
<td></td>
</tr>
<tr>
<td>Raman spectroscopy</td>
<td></td>
</tr>
</tbody>
</table>
References

Special attention: dye

6.1.77. Sphene (Titanite)

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td></td>
</tr>
<tr>
<td>Refractometer (refractive index)</td>
<td></td>
</tr>
<tr>
<td>Hydrostatic weighing (specific gravity)</td>
<td></td>
</tr>
<tr>
<td>Polariscope</td>
<td></td>
</tr>
<tr>
<td>FTIR(-NIR) spectroscopy</td>
<td></td>
</tr>
<tr>
<td>Raman spectroscopy</td>
<td>If other tests are inconclusive</td>
</tr>
</tbody>
</table>

References

6.1.78. Spinel

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td></td>
</tr>
<tr>
<td>Phenomena</td>
<td>Star, colour change</td>
</tr>
<tr>
<td>Refractometer (refractive index)</td>
<td></td>
</tr>
<tr>
<td>Polariscope</td>
<td></td>
</tr>
<tr>
<td>Spectroscopy</td>
<td></td>
</tr>
<tr>
<td>Long-wave UV fluorescence</td>
<td></td>
</tr>
<tr>
<td>Short-wave UV fluorescence</td>
<td></td>
</tr>
<tr>
<td>UV-Visible(-NIR) spectroscopy</td>
<td></td>
</tr>
<tr>
<td>Raman/PL spectroscopy</td>
<td></td>
</tr>
</tbody>
</table>
References

Special attention: synthetics, heat-treatment

6.1.79. Spinel (cobalt)

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td></td>
</tr>
<tr>
<td>Refractometer (refractive index)</td>
<td></td>
</tr>
<tr>
<td>Chelsea Colour Filter</td>
<td></td>
</tr>
<tr>
<td>Polariscope</td>
<td></td>
</tr>
<tr>
<td>Spectroscope</td>
<td></td>
</tr>
<tr>
<td>Long-wave UV fluorescence</td>
<td></td>
</tr>
<tr>
<td>Short-wave UV fluorescence</td>
<td></td>
</tr>
<tr>
<td>UV-Visible(-NIR) spectroscopy</td>
<td></td>
</tr>
<tr>
<td>LA-ICP-MS Chemistry</td>
<td></td>
</tr>
</tbody>
</table>

References

Special attention: synthetics

6.1.80. Spodumene

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td></td>
</tr>
<tr>
<td>Refractometer (refractive index)</td>
<td></td>
</tr>
<tr>
<td>Hydrostatic weighing</td>
<td></td>
</tr>
<tr>
<td>(specific gravity)</td>
<td></td>
</tr>
<tr>
<td>Polariscope</td>
<td></td>
</tr>
<tr>
<td>Long-wave UV fluorescence</td>
<td></td>
</tr>
<tr>
<td>Short-wave UV fluorescence</td>
<td></td>
</tr>
</tbody>
</table>

References
Special attention: easy cleavage, irradiation: blue-green will fade

6.1.81. Sugilite

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td></td>
</tr>
<tr>
<td>Refractometer (refractive index)</td>
<td></td>
</tr>
<tr>
<td>Hydrostatic weighing (specific gravity)</td>
<td></td>
</tr>
<tr>
<td>Polariscope</td>
<td></td>
</tr>
<tr>
<td>Spectroscope</td>
<td></td>
</tr>
<tr>
<td>Raman spectroscopy</td>
<td></td>
</tr>
</tbody>
</table>

References

6.1.82. Taaffeite

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td></td>
</tr>
<tr>
<td>Refractometer (refractive index)</td>
<td></td>
</tr>
<tr>
<td>Polariscope</td>
<td></td>
</tr>
<tr>
<td>Raman spectroscopy</td>
<td></td>
</tr>
</tbody>
</table>

References

Special attention: Taaffeite is a synonym of Magnesiotaaffeite-2N'2S, Musgravite is a synonym of Magnesiotaaffeite-6N'3S.

6.1.83. Tektite

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td></td>
</tr>
</tbody>
</table>
6.1.84. Thomsonite

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td></td>
</tr>
<tr>
<td>Refractometer (refractive index)</td>
<td></td>
</tr>
<tr>
<td>Hydrostatic weighing (specific gravity)</td>
<td></td>
</tr>
</tbody>
</table>

References
- Almquist 1987; Anderson 1978; Wise 1978

Special attention: characteristic appearance

6.1.85. Topaz

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td></td>
</tr>
<tr>
<td>Refractometer (refractive index)</td>
<td></td>
</tr>
<tr>
<td>Hydrostatic weighing (specific gravity)</td>
<td></td>
</tr>
<tr>
<td>Polariscope</td>
<td></td>
</tr>
<tr>
<td>Dichroscope</td>
<td></td>
</tr>
</tbody>
</table>

References

Special attention: coatings, irradiation and heat treatment
6.1.86. Tourmaline

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td>Fracture filling</td>
</tr>
<tr>
<td>Phenomena</td>
<td>Cat’s-eye, colour change</td>
</tr>
<tr>
<td>Refractometer (refractive index)</td>
<td></td>
</tr>
<tr>
<td>Hydrostatic weighing (specific gravity)</td>
<td></td>
</tr>
<tr>
<td>Polariscope</td>
<td></td>
</tr>
<tr>
<td>Dichroscope</td>
<td></td>
</tr>
<tr>
<td>Spectroscope</td>
<td></td>
</tr>
<tr>
<td>UV-Visible-(NIR) spectroscopy</td>
<td></td>
</tr>
<tr>
<td>EDXRF chemistry</td>
<td>For Paraiba</td>
</tr>
<tr>
<td>Colour call</td>
<td></td>
</tr>
</tbody>
</table>

References

6.1.87. Tugtupite

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td></td>
</tr>
<tr>
<td>Refractometer (refractive index)</td>
<td></td>
</tr>
<tr>
<td>Hydrostatic weighing (specific gravity)</td>
<td></td>
</tr>
<tr>
<td>Long-wave UV fluorescence</td>
<td></td>
</tr>
<tr>
<td>Short-wave UV fluorescence</td>
<td></td>
</tr>
<tr>
<td>PL spectroscopy</td>
<td></td>
</tr>
</tbody>
</table>
References

<table>
<thead>
<tr>
<th>6.1.88.</th>
<th>Turquoise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required Test method</td>
<td>Remark</td>
</tr>
<tr>
<td>Microscope</td>
<td>Microscope</td>
</tr>
<tr>
<td>Refractometer (refractive index)</td>
<td>Hydrostatic weighing (specific gravity)</td>
</tr>
<tr>
<td>FTIR(-NIR) spectroscopy</td>
<td>EDXRF chemistry</td>
</tr>
<tr>
<td>Raman spectroscopy</td>
<td>Zachery treatment</td>
</tr>
<tr>
<td></td>
<td>If other tests are inconclusive</td>
</tr>
</tbody>
</table>

References

Special attention: impregnation, dye, composites, imitation matrix, synthetics

<table>
<thead>
<tr>
<th>6.1.89.</th>
<th>Ulexite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required Test method</td>
<td>Remark</td>
</tr>
<tr>
<td>Microscope</td>
<td>Microscope</td>
</tr>
<tr>
<td>Phenomena</td>
<td>Cat’s-eye</td>
</tr>
<tr>
<td>Refractometer (refractive index)</td>
<td>Hydrostatic weighing (specific gravity)</td>
</tr>
<tr>
<td>Raman spectroscopy</td>
<td>Raman spectroscopy</td>
</tr>
</tbody>
</table>

References

Crowningshield 1957; Garlick and Kamb 1991; Ghose 1978; Sinkankas 1955

Special attention: very soft

<table>
<thead>
<tr>
<th>6.1.90.</th>
<th>Variscite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required Test method</td>
<td>Remark</td>
</tr>
<tr>
<td>Microscope</td>
<td>Microscope</td>
</tr>
<tr>
<td>Refractometer (refractive index)</td>
<td>Spectroscopy</td>
</tr>
<tr>
<td>FTIR(-NIR) spectroscopy</td>
<td>Raman spectroscopy</td>
</tr>
<tr>
<td></td>
<td>If other tests are inconclusive</td>
</tr>
</tbody>
</table>

References
6.1.91. Zircon

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td></td>
</tr>
<tr>
<td>Phenomena</td>
<td>Cat’s-eye</td>
</tr>
<tr>
<td>Refractometer (refractive index)</td>
<td></td>
</tr>
<tr>
<td>Hydrostatic weighing (specific gravity)</td>
<td></td>
</tr>
<tr>
<td>Polariscope</td>
<td></td>
</tr>
<tr>
<td>Spectroscope</td>
<td></td>
</tr>
</tbody>
</table>

References

Special attention: heat treatment

6.1.92. Zoisite

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td></td>
</tr>
<tr>
<td>Refractometer (refractive index)</td>
<td></td>
</tr>
<tr>
<td>Dichroscope</td>
<td></td>
</tr>
<tr>
<td>Polariscope</td>
<td></td>
</tr>
<tr>
<td>EDXRF chemistry</td>
<td>Cobalt coating</td>
</tr>
</tbody>
</table>
References

Special attention: heat treatment, clarity enhancement, coating

6.2. Test methods pearls and organic gem materials

6.2.1. Amber

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td>Acetone reaction, thermal reaction test</td>
</tr>
<tr>
<td>Polariscpe</td>
<td></td>
</tr>
<tr>
<td>Refractometer (refractive index)</td>
<td></td>
</tr>
<tr>
<td>Hydrostatic weighing (specific gravity)</td>
<td></td>
</tr>
<tr>
<td>FTIR(-NIR) spectroscopy</td>
<td></td>
</tr>
</tbody>
</table>

References

Special attention: clarity enhanced, dyed, heated (with pressure), pressed, reconstructed (encased in plastics), faked insects, recent resins

6.2.2. Bone

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td></td>
</tr>
<tr>
<td>Refractometer (refractive index)</td>
<td></td>
</tr>
<tr>
<td>Hydrostatic weighing (specific gravity)</td>
<td></td>
</tr>
</tbody>
</table>

References

Arnould and Poirat (1975), Brown and Lund (1979), Cognet et al. (2003), Lesh (1980), Mann and Brown (2008), Pewkliang et al. (2008), Scarratt (1992), Webster (1948)

Special attention: dye, impregnation
6.2.3. Copal

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td>Acetone reaction, thermal reaction test</td>
</tr>
<tr>
<td>Polariscope</td>
<td></td>
</tr>
<tr>
<td>Refractometer (refractive index)</td>
<td></td>
</tr>
<tr>
<td>Hydrostatic weighing (specific gravity)</td>
<td></td>
</tr>
<tr>
<td>FTIR(-NIR) spectroscopy</td>
<td></td>
</tr>
</tbody>
</table>

References

Clery (2002), Winkler et al. (2001)

6.2.4. Coral

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td>Thermal reaction test</td>
</tr>
<tr>
<td>Refractometer (refractive index)</td>
<td>If possible</td>
</tr>
<tr>
<td>Hydrostatic weighing (specific gravity)</td>
<td></td>
</tr>
<tr>
<td>FTIR(-NIR) spectroscopy</td>
<td>If other tests are inconclusive</td>
</tr>
<tr>
<td>Raman spectroscopy</td>
<td>If other tests are inconclusive</td>
</tr>
</tbody>
</table>

References

6.2.5. Horn

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td></td>
</tr>
<tr>
<td>Refractometer (refractive index)</td>
<td></td>
</tr>
<tr>
<td>Hydrostatic weighing (specific gravity)</td>
<td></td>
</tr>
<tr>
<td>Raman spectroscopy</td>
<td>If other tests are inconclusive</td>
</tr>
</tbody>
</table>

References

Brown (1976), Liddicoat (1970), Webster (1973)
Special attention: dye, imitations

6.2.6. Ivory – elephant, mammoth/mastodon, hippopotamus, walrus, narwhal

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td>Growth structures</td>
</tr>
<tr>
<td>Refractometer (refractive index)</td>
<td></td>
</tr>
<tr>
<td>Hydrostatic weighing</td>
<td>(specific gravity)</td>
</tr>
<tr>
<td>Long-wave UV fluorescence</td>
<td></td>
</tr>
<tr>
<td>Raman spectroscopy</td>
<td></td>
</tr>
<tr>
<td>X-Ray CT scan</td>
<td>In some cases to view growth structures</td>
</tr>
</tbody>
</table>

References

Special attention: dye, imitations, CITES issues.

6.2.7. Ivory - vegetable

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
<th>6.2.8. Pearl (Abalone Species)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td>Growth structures</td>
<td>Microscope</td>
</tr>
<tr>
<td>Refractometer (refractive index)</td>
<td></td>
<td>Microradiography</td>
</tr>
<tr>
<td>Hydrostatic weighing</td>
<td>(specific gravity)</td>
<td>UV-Visible(-NIR) spectroscopy</td>
</tr>
<tr>
<td>Raman spectroscopy</td>
<td></td>
<td>Raman spectroscopy</td>
</tr>
</tbody>
</table>

References
Brown (1996), Scarratt (1992), Webster (1949)

6.2.8. Pearl (Abalone Species)

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td></td>
</tr>
<tr>
<td>Microradiography</td>
<td></td>
</tr>
<tr>
<td>UV-Visible(-NIR) spectroscopy</td>
<td></td>
</tr>
<tr>
<td>Raman spectroscopy</td>
<td></td>
</tr>
</tbody>
</table>

References

Special attention: blister versus cyst, damage by acids

6.2.9. Pearl (Cassis species)
6.2.10. Pearl (Lobatus gigas/Strombus gigas – Conch)

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td></td>
</tr>
<tr>
<td>Microradiography</td>
<td></td>
</tr>
<tr>
<td>UV-Visible(-NIR) spectroscopy</td>
<td></td>
</tr>
<tr>
<td>Raman spectroscopy</td>
<td></td>
</tr>
</tbody>
</table>

References

Special attention: X-ray discolouration to pink samples, possible similarity to other porcellaneous pearls when not the usual pink colour (i.e., white, orange to purplish), damage by acids, shell imitations

6.2.11. Pearl (Hyriopsis cummingi and other freshwater mussels)

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td></td>
</tr>
<tr>
<td>Microradiography</td>
<td></td>
</tr>
<tr>
<td>UV-Visible(-NIR) spectroscopy</td>
<td></td>
</tr>
<tr>
<td>Raman spectroscopy</td>
<td></td>
</tr>
<tr>
<td>EDXRF chemistry</td>
<td>Off-white (stronger than light tones) samples only</td>
</tr>
<tr>
<td>Raman spectroscopy</td>
<td></td>
</tr>
<tr>
<td>LA-ICP-MS chemistry</td>
<td>If EDXRF is inconclusive</td>
</tr>
<tr>
<td>X-Ray CT scan</td>
<td>Difficult cases</td>
</tr>
</tbody>
</table>

References

Special attention: natural versus non-beaded cultured, blister versus cyst, bleaching, irradiation, dyes, Maeshori treatment, damage by acids.

6.2.12. Pearl (Imitation)
<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td></td>
</tr>
<tr>
<td>Microradiography</td>
<td></td>
</tr>
<tr>
<td>Raman spectroscopy</td>
<td>If other tests are inconclusive</td>
</tr>
</tbody>
</table>

References

Special attention: mixed into items with nacreous samples. When applying microradiography, some solid plastic imitations may appear similar to nacreous pearls with a tight structure.

6.2.13. Pearl (*Lambis* species)

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td></td>
</tr>
<tr>
<td>Microradiography</td>
<td></td>
</tr>
<tr>
<td>UV-Visible(-NIR) spectroscopy</td>
<td>Raman spectroscopy</td>
</tr>
</tbody>
</table>

References

Landman et al. (2001), Strack (2006)

Special attention: possible similarity to other brownish or near-white porcelaneous pearls, damage by acids.

6.2.14. Pearl (*Melo* species)

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td></td>
</tr>
<tr>
<td>UV-Visible(-NIR) spectroscopy</td>
<td>Raman spectroscopy</td>
</tr>
</tbody>
</table>

References

Landman et al. (2001), Poppe (1992), Scarratt 1992d, 1994b; Sciaguato 2004; Strack (2006); Traub 1997; Traub et al. 1999

Special attention: X-ray discolouration to orange samples, possible similarity to other orange porcelaneous pearls, damage by acids, check for shaped examples, shell imitations.

6.2.15. Pearl (*Mercenaria mercenaria*)

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td></td>
</tr>
<tr>
<td>Microradiography</td>
<td></td>
</tr>
<tr>
<td>UV-Visible(-NIR) spectroscopy</td>
<td>Raman spectroscopy</td>
</tr>
</tbody>
</table>

"
Special attention: possible similarity to other purplish or even white non-nacreous pearls, damage by acids.

6.2.16. **Pearl (Mytilus species)**

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td></td>
</tr>
<tr>
<td>Microradiography</td>
<td></td>
</tr>
<tr>
<td>UV-Visible(-NIR) spectroscopy</td>
<td></td>
</tr>
<tr>
<td>Raman spectroscopy</td>
<td></td>
</tr>
</tbody>
</table>

References

Special attention: possible similarity to other dark hued or purplish nacreous pearls, damage by acids.

6.2.17. **Pearl (Pinctada fucata)**

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td></td>
</tr>
<tr>
<td>Microradiography</td>
<td></td>
</tr>
<tr>
<td>UV-Visible(-NIR) spectroscopy</td>
<td>Off-white pearls only</td>
</tr>
<tr>
<td>EDXRF chemistry</td>
<td></td>
</tr>
<tr>
<td>Raman spectroscopy</td>
<td></td>
</tr>
</tbody>
</table>

References

Special attention: possible similarity to other nacreous pearls, blister versus cyst, coatings, irradiated bead nuclei in bead cultured pearls, damage by acids.

6.2.18. **Pearl (Pinctada margaritifera)**

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td></td>
</tr>
<tr>
<td>Microradiography</td>
<td></td>
</tr>
<tr>
<td>UV-Visible(-NIR) spectroscopy</td>
<td></td>
</tr>
<tr>
<td>EDXRF chemistry</td>
<td></td>
</tr>
<tr>
<td>Raman spectroscopy</td>
<td></td>
</tr>
</tbody>
</table>

References

Special attention: possible similarity to other nacreous pearls, blister versus cyst, dye, bleaching (“Chocolate pearls”), coatings, damage by acids.

6.2.19. **Pearl (Pinctada maxima)**

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td></td>
</tr>
<tr>
<td>Microradiography</td>
<td></td>
</tr>
<tr>
<td>UV-Visible(-NIR) spectroscopy</td>
<td>Off-white (stronger than light tones) samples only</td>
</tr>
<tr>
<td>EDXRF chemistry</td>
<td></td>
</tr>
<tr>
<td>Raman spectroscopy</td>
<td></td>
</tr>
<tr>
<td>LA-ICP-MS chemistry</td>
<td>If EDXRF is inconclusive</td>
</tr>
<tr>
<td>X-Ray CT scan</td>
<td>Difficult cases</td>
</tr>
</tbody>
</table>

References

Special attention: natural versus non-beaded cultured, possible similarity to other nacreous pearls, blister versus cyst, dye, bleaching, coatings, Maeshori treatment, damage by acids.

6.2.20. **Pearl (Pinctada mazatlantica)**

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td></td>
</tr>
<tr>
<td>Microradiography</td>
<td></td>
</tr>
<tr>
<td>UV-Visible(-NIR) spectroscopy</td>
<td></td>
</tr>
<tr>
<td>EDXRF chemistry</td>
<td></td>
</tr>
<tr>
<td>Raman spectroscopy</td>
<td></td>
</tr>
</tbody>
</table>

References

Special attention: possible similarity to other nacreous pearls, blister versus cyst, dye, bleaching (“Chocolate pearls”), coatings, damage by acids.

6.2.21. **Pearl (Pinctada radiata)**

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td></td>
</tr>
<tr>
<td>Microradiography</td>
<td></td>
</tr>
<tr>
<td>UV-Visible(-NIR) spectroscopy</td>
<td>Off-white (stronger than light tones) samples only</td>
</tr>
<tr>
<td>EDXRF chemistry</td>
<td></td>
</tr>
<tr>
<td>Raman spectroscopy</td>
<td></td>
</tr>
<tr>
<td>X-Ray CT scan</td>
<td>Difficult cases</td>
</tr>
</tbody>
</table>
6.2.22. **Pearl (Pinna species [including Atrina species])**

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td></td>
</tr>
<tr>
<td>Microradiography</td>
<td></td>
</tr>
<tr>
<td>UV-Visible(-NIR) spectroscopy</td>
<td></td>
</tr>
<tr>
<td>EDXRF chemistry</td>
<td></td>
</tr>
<tr>
<td>Raman spectroscopy</td>
<td></td>
</tr>
</tbody>
</table>

References

Special attention: possible similarity to other dark hued nacreous and non-nacreous pearls, durability of heavily cracked samples, damage by acids.

6.2.23. **Pearl (Pleuroopa species)**

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td></td>
</tr>
<tr>
<td>Microradiography</td>
<td></td>
</tr>
<tr>
<td>UV-Visible(-NIR) spectroscopy</td>
<td></td>
</tr>
<tr>
<td>Raman spectroscopy</td>
<td></td>
</tr>
</tbody>
</table>

References

Landman et al. (2001), Strack (2006)

Special attention: possible similarity to other yellowish to brown porcellaneous pearls, damage by acids

6.2.24. **Pearl (Pteria species)**

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td></td>
</tr>
<tr>
<td>Microradiography</td>
<td></td>
</tr>
<tr>
<td>UV-Visible(-NIR) spectroscopy</td>
<td></td>
</tr>
<tr>
<td>EDXRF chemistry</td>
<td></td>
</tr>
<tr>
<td>PL spectroscopy</td>
<td>Helps with mollusc identification in some cases</td>
</tr>
<tr>
<td>Raman spectroscopy</td>
<td></td>
</tr>
</tbody>
</table>

References

Special attention: natural versus non-beaded cultured, a-typical bead nuclei, possible similarity to other nacreous pearls, blister versus cyst, bleaching, dyes, coatings, damage by acids.

6.2.25. **Pearl (Scallops [pectinidae] species)**

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td></td>
</tr>
<tr>
<td>Microradiography</td>
<td></td>
</tr>
<tr>
<td>UV-Visible(-NIR) spectroscopy</td>
<td></td>
</tr>
<tr>
<td>Raman spectroscopy</td>
<td></td>
</tr>
</tbody>
</table>

References

Special attention: possible similarity to other white to lightly coloured non-nacreous/porcellaneous pearls, damage by acids.

6.2.26. **Pearl (Tridacna [clam] species)**

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td></td>
</tr>
<tr>
<td>Microradiography</td>
<td></td>
</tr>
<tr>
<td>UV-Visible(-NIR) spectroscopy</td>
<td></td>
</tr>
<tr>
<td>Raman spectroscopy</td>
<td></td>
</tr>
</tbody>
</table>

References
Hardy (1947), Landman et al. (2001), Strack (2006)

Special attention: possible similarity to other white to lightly coloured porcellaneous pearls, shell imitations, CITES, damage by acids.

6.2.27. **Shell**

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td></td>
</tr>
<tr>
<td>Refractometer (refractive index)</td>
<td></td>
</tr>
<tr>
<td>Hydrostatic weighing (specific gravity)</td>
<td></td>
</tr>
</tbody>
</table>

References

Special attention: dye, lustre enhancement
6.2.28. Tortoise shell

<table>
<thead>
<tr>
<th>Required Test method</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td></td>
</tr>
<tr>
<td>Refractometer (refractive index)</td>
<td></td>
</tr>
<tr>
<td>Hydrostatic weighing (specific gravity)</td>
<td></td>
</tr>
<tr>
<td>Short-wave UV phosphorescence</td>
<td></td>
</tr>
</tbody>
</table>

References
Brown 1978, 1995b; Brown and Lund 1979; Hainschwang and Leggio 2006; Scarratt 1992a

Special attention: structure, protein smell (hot point), plastic (common imitation)

6.3. Test methods definitions

6.3.1. Clarity enhancement check/extent
Detection of filling of fissures and/or wide fractures and cavities with oils, resins, or any other filler, and an estimation of the extent of this treatment (e.g., none/insignificant, minor, moderate, or significant).

6.3.2. Colour call
Precise colour description is required, for instance to make sure a colour-change is present, or to establish whether a sapphire may be called Padparadscha.

6.3.3. Chelsea colour filter
A filter that only transmits deep red and yellow-green light.

6.3.4. DiamondView
The DiamondView instrument illuminates a diamond with intense short-wave ultra-violet radiation and detects the surface fluorescence that is caused. Fluorescence and Phosphorescence images, showing clear growth patterns, are projected on a computer screen.

6.3.5. Dichroscope
An instrument that allows to detect whether a gemstone shows pleochroism and, if it does, to observe the pleochroic colours side by side, for easy comparison and description.

6.3.6. EDXRF chemistry
Energy-dispersive X-ray fluorescence is a technique whereby a sample is targeted by a high-energy X-ray beam, causing its chemical elements to fluoresce with a spectrum of lower-energy X-rays, each peak being characteristic of a chemical element. The relative concentrations of elements are indicated by the fluorescent X-ray peak intensities.
6.3.7. **FTIR(-NIR) spectroscopy**

Accurate measurement of absorption or transmission positions, and their relative intensities in the (near-)infrared range of the electromagnetic spectrum. The resulting spectra are measured and digitally recorded by a Fourier Transform Infrared spectrometer. “Fourier Transform” is a mathematical technique used to convert the spectrometer signal into a spectrum plotted as a function of energy. The measurements can be done in different modes, such as e.g., transmission, diffusion reflectance, or by using KBr pellets.

6.3.8. **Hydrostatic weighing**

The method used to measure the specific gravity (SG) of a gemstone. It is based on the principle of Archimedes, comparing the weight of an object in air (A) with the weight of that object in water (W). The SG can then be calculated:

\[\text{SG} = \frac{A}{A-W} \]

6.3.9. **Immersion**

A gemstone is immersed in a liquid with a similar refractive index to observe features that are otherwise not or less visible, for instance colour distribution or zoning.

6.3.10. **LA-ICP-MS Chemistry**

Laser Ablation Inductively Coupled Plasma Mass Spectrometry is an analytical technology that enables highly sensitive elemental and isotopic analysis to be performed directly on solid samples. LA-ICP-MS begins with a laser beam focused on the sample surface to generate fine particles – a process known as Laser Ablation. The ablated particles are then transported to the secondary excitation source of the ICP-MS instrument for digestion and ionisation of the sampled mass. The excited ions in the plasma torch are subsequently introduced to a mass spectrometer detector for both elemental and isotopic analysis. It is not entirely non-destructive, but can perform ultra-highly sensitive chemical analysis down to ppb (parts per billion) level.

6.3.11. **Microradiography**

The process of taking a photograph of an object by using X-rays, showing minute internal structure.

6.3.12. **Microscope**

A gemmological microscope is a stereo binocular microscope with good depth of vision and field of view, with generally magnification varying in between 10x and 80x. Research microscopes with much higher magnification power may be used as well in gemmological laboratories.

6.3.13. **Phenomena**

Detection of phenomena, such as colour-change of a gemstone, when viewed in different light conditions, play of colour, labradorescence, reflection of light by inclusions causing chatoyancy (Cat’s-eye), asterism (Star), aventurescence, adularescence; inclusion patterns causing the trapiche effect, bloodshot effect.
6.3.14. PL spectroscopy
Detection of photoluminescence (light emission) of an object illuminated by a laser. Light emission occurs after the excitation by photons (electromagnetic radiation). Different lasers may be used, for example red (633 nm), green (514 and 532 nm), blue (488 nm) and UV (250 nm) lasers. For diamonds, PL is usually performed at low temperature (-196°C).

6.3.15. Pleochroism
A property of doubly refractive coloured gemstones of absorbing light to an extent that depends on the vibration direction of the polarised light rays. The effect causes two different colours (dichroism) or three different colours (trichroism), depending on the type of gemstone. These different colours may be seen when viewing a gemstone from different directions under transmitted light.

6.3.16. Polariscope
A polarscope is an instrument with two polarising filters fitted one above the other in a fixed crossed position, meaning that the transmitted vibration direction of polarisation of the upper filter is at right angles to that of the lower filter. The filters are either fixed on an inbuilt light or placed on a separate light source.

6.3.17. Raman spectroscopy
Detection of an extremely slight shift of energy of the light or radiation scattered on the surface of an object illuminated by a laser. The resulting re-emitted spectrum, or Raman spectrum, is characteristic for different (solid or fluid) substances, and allows rapid identification, also if they are enclosed within another transparent substance. Different lasers may be used, for example near-infrared (780 nm), red (633 nm), green (514 and 532 nm), blue (488 nm) and UV (250 nm) lasers.

6.3.18. Refractometer
The gemmological refractometer is designed to measure the refractive index or indices of a gemstone. It makes use of total internal reflection of monochromatic light, going through an in-built special type of glass, which is in contact with a flat, polished surface of a gemstone.

6.3.19. Refractive index
A simple relationship between the light’s angle of incidence and angle of refraction (the amount of bending), when it reaches and enters a gemstone. The slower the light’s speed in a material, the greater the bending effect, thus the higher the refractive index. Depending on the structure of the material, light will remain as a single ray or be split into two rays; the effects are called “single refraction” (giving one refractive index), and “double refraction” (giving two refractive indices, with a minimum and maximum value).

6.3.20. Residue check/extent
Detection of residue in healed fissures and/or filled cavities as a result of heat-treatment, and an estimation of the extent of this treatment (e.g., none/insignificant, minor, moderate, or significant).

6.3.21. Spectroscope

A spectroscope is essentially a tube with a narrow slit at one end and a lens at the other, with in between an arrangement of optically connected prisms, or a diffraction grating, creating a spectrum - spectral colours of white light that enters the slit and are spread out by the prisms or grating and can be viewed through the lens.

6.3.22. Long-wave UV fluorescence

Emission of visible light by a substance when excited by long-wave ultraviolet radiation (principal wavelength of 365 nm), produced by a UV-lamp.

6.3.23. Long-wave UV phosphorescence

Continued emission of visible light by a substance after excited by long-wave ultraviolet radiation (principal wavelength of 365 nm), produced by a UV-lamp.

6.3.24. SEM-EDS

Scanning Electron Microscopy with Energy Dispersive X-Ray microanalysis is a technique, using an electron beam to scan the surface of an object. Scattered electron reflections are detected at very high magnification which are displayed as black-and-white images on a screen. Elemental analysis and mapping can be obtained, as the electrons also cause the object's chemical elements to emit a spectrum of X-rays, each peak being characteristic of a chemical element.

6.3.25. Short-wave UV fluorescence

Emission of visible light by a substance when excited by short-wave ultraviolet radiation (principal wavelength of 254 nm), produced by a UV-lamp.

6.3.26. Short-wave UV phosphorescence

Continued emission of visible light by a substance after excited by long-wave ultraviolet radiation (principal wavelength of 365 nm), produced by a UV-lamp.

6.3.27. Specific Gravity

The ratio of the weight of a substance to the weight of an equal volume of water.

6.3.28. UV-Visible(-NIR) spectroscopy

Accurate measurement of absorption or transmission positions, and their relative intensities in the UV, Visible light (and near-infrared) range of the electromagnetic spectrum. The resulting spectra are measured and digitally recorded by a UV-Visible(-NIR) spectrometer.

6.3.29. X-Ray CT scan
X-Ray computed tomography makes use of computer-processed combinations of many X-ray images taken from different angles around a single axis of rotation, to produces cross-sectional (tomographic) images (virtual “slices”) of specific areas of a scanned object, allowing the user to see inside the object without cutting. Digital geometry processing is used to generate a three-dimensional image of the inside of the object.

6.3.30. XRD

X-Ray Diffraction is a scattering of X-rays by the atoms of a crystal that produces an interference effect so that the diffraction pattern gives information on the structure of the crystal or the identity of a crystalline substance. One of two primary types of XRD analysis (X-ray powder diffraction and single-crystal XRD) is commonly applied.

6.4. Test methods references

- Abs-Wurmbach, I. K. Langer and E. Tillmanns (1977), Structure and polarized absorption spectra of Mn3+-substituted andalusites (viridines), *Naturwissenschaften*, 64, 10, 527-528.

Angelini, I. and Bellintani, P. (2005) Archaeological ambers from Northern Italy: An FTIR-drift study of provenance by comparison with the geological amber database, *Archaeometry*, 47. 2. 441-454

Bank, H. (1964a) Alexandritvorkommen in Südrhodesien, Zeitschrift der Deutschen Gesellschaft für Edelsteinkunde, 47. 11-15

Bank, H. and Henn, U. (1990a) Physical and chemical data of gem aquamarines from Nigeria, Canadian Gemmologist, 11. 1. 8-10

Bank, H. and Henn, U. (1990b) Further examinations on synthetic emerald overgrowth on colourless beryl seeds from Lechkleitner, Canadian Gemmologist, 11. 2. 39-41

Bank, H. and Henn, U. (1990) Physical and chemical data of gem aquamarines from Nigeria, Canadian Gemmologist, 11. 1. 8-10

Bank, H. and Henn, U. (1990b) Further examinations on synthetic emerald overgrowth on colourless beryl seeds from Lechkleitner, Canadian Gemmologist, 11. 2. 39-41

Barber, D. J. and Wenk, H. R. (1979) Deformation twinning in calcite, dolomite, and other rhombohedral carbonated, Physics and Chemistry of Minerals, 5. 2. 141-165

Bariac, L. (1979) Diaspor ein ungewohnlich grosser kristall aus dem dolomit-steinbruch sivec unweit von prilep in Mazedonien, Jugoslawein, Lapis, 4. 11. 25-
Bariand, P. (1986) La mine du Beix (Puy-de-Dome), Monde et Mineraux, 75, 16-17
Barth, T. F. W. (1931) Permanent changes in the optical orientation of feldspars exposed to heat, Norsk Geologisk Tidsskrift, 12. 57-72
Barth, T. F. W. (1932) The chemical composition of noselite and haüyne, American Mineralogist, 17. 10. 466-471
Barth, T. F. W. (1965b) Relations between optical orientation and structural state in the system of potassium feldspar, Indian Mineralogist, 6. 1/2. 40-47

Bastos, F. M. (1964) A 15.4-pound Brazilian aquamarine. *Gems and Gemology*, 11. 8. 239-241

Beck, R. J. (1984), New Zealand Jade, *Wellington*, A.H. and A.W. Reed,

Benson, L.B. (1961) Developments and highlights at the Gem Trade Lab in Los Angeles, *Gems and Gemology*, 10. 5. 143-147

Booschert, G. (1990a) Les emeraudes de Colombie, Revue de Gemmologie a.f.g., 105. 13-16

Booschert, G. (1990b) Smaragde aus Kolumbien, Deutsche Goldschmiede Zeitung, 4,6,8. 184-186, 96-102, 68-70

Bouska, V. and Rost, R. (1972) Double moldavites in southern Bohemia, Science, 177. 4084. 519-520

Brightman R. (1982), Stones seen - Viridene with a low R.I, Australian Gemmologist, 14, 12, 322-323.

85

Brown, G. (1997) Benitoite - official gemstone of the state of California, Australian Jeweller, April. 51

Calas, G. (1972b) On the blue colour of natural banded fluorites, Mineralogical Magazine, 38, 300. 977-979

Cassedanne, J. P. (1982b) Les agates de type Umbu, *Revue de Gemmologie a.f.g.*, 73. 5-8

Clements, T. (1941) The emerald mines of Muzo, Colombia, South America, *Gems and Gemology*, 3. 9. 130-134

Cooray, P. G. (1970) A carbonate-bearing fluor-chlor-hydroxyapatite from Matale, Ceylon, American Mineralogist, 55, 11/12, 2038-2041

Crowningshield, G. R. (1958b) Synthetic emerald testing. Gems and Gemology, 9. 8. 228
Crowningshield, G. R. (1959a) Andalusite, Gems and Gemology, 9. 10. 292
Crowningshield, G. R. (1959b) Highlights at the Gem Trade Lab in New York, Gems and Gemology, 9. 10. 291-294
Crowningshield, G. R. (1960a) Andalusite, Gems and Gemology, 10. 4. 121
Crowningshield, G. R. (1960b) Black coral, Gems and Gemology, 10. 3. 72-74
Crowningshield, G. R. (1960c) Developments and highlights at the Gem Trade Lab in New York, Gems and Gemology, 10. 3. 67-74, 92
Crowningshield, G. R. (1960d) Developments and highlights at the Gem Trade Lab in New York, Gems and Gemology, 10. 4. 114-123
Crowningshield, G. R. (1960e) Hessonite garnet, Gems and Gemology, 10. 3. 72
Crowningshield, G. R. (1960f) Idocrase cameo, Gems and Gemology, 10. 4. 121
Crowningshield, G. R. (1960g) Pink danburite, Gems and Gemology, 10. 3. 71
Crowningshield, G. R. (1960h) Unusual gemstones, Gems and Gemology, 10. 1. 10, 31
Crowningshield, G. R. (1960i) Unusual stones, Gems and Gemology, 10. 2. 61-62
Crowningshield, G. R. (1961b) Andalusite, Gems and Gemology, 10. 6. 185-186
Crowningshield, G. R. (1961c) Brazilian pegmatite emerald, Gems and Gemology, 10. 8. 244
Crowningshield, G. R. (1961e) Developments and highlights at the Gem Trade Lab in New York, Gems and Gemology, 10. 6. 180-186, 191
Crowningshield, G. R. (1961f) Developments and highlights at the Gem Trade Lab in New York, Gems and Gemology, 10. 8. 242-246
Crowningshield, G. R. (1961i) Rare minerals, Gems and Gemology, 10. 6. 186
Crowningshield, G. R. (1962a) 3-phase inclusions in fluorite, Gems and Gemology, 10. 12. 376
Crowningshield, G. R. (1962e) Rare blue jadeite, *Gems and Gemology*, 10. 9. 283
Crowningshield, G. R. (1963d) Developments and highlights at the Gem Trade Lab in New York, *Gems and Gemology*, 11. 3. 80-87
Crowningshield, G. R. (1964m) Symerald, *Gems and Gemology*, 11. 7. 218
Crowningshield, G. R. (1965h) Enstenite!, *Gems and Gemology*, 11. 11. 334
Crowningshield, G. R. (1969a) "Chrome chrysoprase", *Gems and Gemology*, 13. 4. 121-122
Crowningshield, G. R. (1969h) Rare, transparent actinolite, *Gems and Gemology*, 13. 3. 89
Crowningshield, G. R. (1970f) Developments and highlights at GIA's Lab in New York, Gems and Gemology, 13. 7. 221-229
Crowningshield, G. R. (1970k) Transparent colorless grossularite, Gems and Gemology, 13. 7. 227-228
Crowningshield, G. R. (1970l) Transparent lazulite and green andalusite, Gems and Gemology, 13. 7. 221-222
Crowningshield, G. R. (1970m) Trapiche emerald, Gems and Gemology, 13. 6. 195
Crowningshield, G. R. (1970o) Zerfass synthetic emerald, Gems and Gemology, 13. 5. 162
Crowningshield, G. R. (1971c) Natural emerald - yes or no!, Gems and Gemology, 13. 12. 379-380
Crowningshield, G. R. (1971g) Paraffin...Its pros and cons, Gems and Gemology, 14. 3. 84-85
Crowningshield, G. R. (1971i) Recent emerald find, Gems and Gemology, 14. 2. 52-53
Crowningshield, G. R. (1971k) Fire agate, Gems and Gemology, 14. 6. 177
Crowningshield, G. R. (1974b) Developments and highlights at GIA's Lab in New York, Gems and Gemology, 14. 10. 298-305
Crowningshield, G. R. (1974c) Emerald imitations, Gems and Gemology, 14. 10. 300-303
Crowningshield, G. R. (1974e) Other rarities, Gems and Gemology, 14. 10. 299
Crowningshield, G. R. (1974h) Unusual jades identified, Gems and Gemology, 14. 10. 303
Crowningshield, G. R. (1975a) Selective dyeing of calcite, Gems and Gemology, 15. 1. 12
Crowningshield, G. R. (1975b) Black is popular, Gems and Gemology, 15. 3. 90-91
Crowningshield, G. R. (1975d) Kornerupine, Gems and Gemology, 15. 3. 92-93
Crowningshield, G. R. (1975e) Developments and highlights at GIA's Lab in New York, Gems and Gemology, 15. 3. 89-94
Crowningshield, G. R. (1979a) Alexandrite oddities, Gems and Gemology, 16. 5. 148
Crowningshield, G. R. (1979c) Some new imitations, Gems and Gemology, 16. 7. 200
Crowningshield, G. R. (1980b) A giant chrysoberyl crystal, Gems and Gemology, 16. 9. 320
Cuadra, C. (1994) Polymer clay simulations ivory and turquoise, Ornament, 17. 3. 84-89
Cuij, J. P. (1992) Données actuelles concernant la structure et al composition de la nacre et des perles, Bulletin de la Institut Oceanographique, 8. 77-87
Da Negro, A. and Ungaretti, L. (1971) Refinement of the crystal structure of aragonite, American Mineralogist, 56. 5/6. 768-772
Dal Negro, A. and Ungaretti, L. (1971) Refinement of the crystal structure of aragonite, American Mineralogist, 56. 5/6. 768-772
Davison, P. (2000) Scottish jasper, Gemmology Queensland, 1. 5. 21-22

De Weerdt, F. (2001b) Synthetic gem quality diamonds - Historical overview and developments, *Antwerp Facets*, 37, 6-14

Dillon, S. (1981a) Afghanistan situation, Gems and Gemology, 17. 1. 56

Dillon, S. (1981c) Emerald, Gems and Gemology, 17. 2. 117

Dörsam G., Liebscher A., Wunder B., Franz G. and Gottschalk M. (2007) Crystal chemistry of synthetic Ca$_{2}$Al$_{2}$Si$_{5}$O$_{12}$OH - Sr$_{2}$Al$_{2}$Si$_{5}$O$_{12}$OH solid-solution series of zoisite and clinzoisite. *American Mineralogist*, 92, (7), 1133-1147.

103

Dunn, P. J. (1978) Gem peridot and enstatite with spinel inclusions from Chihuahua, Mexico, *Journal of Gemmology*, 16, 4. 236-238

Eppler, W. F. (1960a) A Brazilian emerald (a contribution to the study of crystal growth), Journal of Gemmology, 7. 6. 221-225

Erel, E. (2007) Éléments de caractérisation des diamants naturels et synthétiques colorés, Revue de Gemmologie a.f.g., 162. 4-8

Farn, A. E. (1973) Blue beryls which are not aquamarines, *Journal of Gemmology*, 13, 8. 293-295

Faye, G. H. and Harris, D. C. (1969) On the origin of colour and pleochroism in andalusite from Brazil, Canadian Mineralogist, 10, 1, 47-56

Federman, D. (1992) Diffusion treatment can blue the whitest of saphires but since the color is only skin deep, full disclosure is a duty--one some sellers shirk. Modern Jewel, 76, 118.

Fenn, P. M. (1977) The nucleation and growth of alkali feldspars from hydrous melts, Canadian Mineralogist, 15, 2, 135-161

Foord, E. E. and Mills, B. A. (1978b) Blaxiality in "isometric" and "dimetric" crystals, American Mineralogist, 63. 3/4. 316-325

Foster, W. R. (1955) Simple method for the determination of the plagioclase feldspars, American Mineralogist, 40. 3/4. 179-185

Francis, C. A. (1985) New data on the forsterite-tephroite series, American Mineralogist, 70. 5/6. 568-575

Fritsch, E. (1993a) Best way to identify bleached and resin impregnated jadeite, Jewellery News Asia, 86-90.
Fritsch, E. (1993b) GIA's findings insufficient, Jewellery News Asia, 86, 90.

Fryer, C. (1985d) Diaspore, a rare gem material, *Gems and Gemology* 19, 2. 1. 115
Fryer, C. (1984i) Jade, dyed blue jadeite, *Gems and Gemology* 19, 2. 1.15
Fryer, C. (1984) Gemstone inclusions. *Gems and Gemology* 20, 1. 113
Fryer, C. (1982m) Synthetic green beryl reported from Australia, *Gems and Gemology* 18, 1. 44-45
Fryer, C. (1990c) Cobalt colored color-change spinel, Gems and Gemology, 22. 3. 226-227
Fryer, C. (1989c) Emerald, with plastic-like filling, Gems and Gemology, 25. 2. 104
Fryer, C. (1989e) Impregnated jadeite jade, Gems and Gemology, 25. 4. 239-240
Fryer, C. (1989f) Phenomenal chrysoberyl, Gems and Gemology, 25. 2. 102
Fryer, C. (1989g) X-ray transparency separates two imitations, Gems and Gemology, 25. 2. 105
Fryer, C. (1990g) Imitation turquoise. Gems and Gemology, 26. 4. 299
Fryer, C. (1991a) "Emerald" with unusual color zoning. Gems and Gemology, 27. 1. 41
Fryer, C. (1993g) Treated amber. Gems and Gemology, 29. 2. 122-123
Fryer, C. (1996b) Imitation jade. Gems and Gemology, 32. 2. 123
Fryer, C. (1997c) Hornbill "ivory". Gems and Gemology, 33. 1. 57-58

Gaite J.M., Bookin A.S. and Dritz V.A. (1985) Local distortion of the spodumene structure around the M2 and S1 sites in forsterite obtained from EPR. *Journal of Chemical Physics*, 80, 6, 2747-2751.

Gem Trade Lab Notes: Pearls, cultured, with dolomite beads, (1998) Gems and Gemology, 34, 2. 130-131

Gillet, P. (1993) Stability of magnesite (MgCO3) at mantle pressure and temperature conditions: A Raman spectroscopic study, American Mineralogist, 78. 11/12. 1328-1331

Giuliani, G., Rodriguez, C. T. and Rueda, F. (1990a) Les gisements d'emerande de la Cordillere Orientale de la Colombie: Nouvelles données métallologiques, Mineralium Deposita, 25. 2. 105-111

Greiner, D. J. and Bloss, F. D. (1987) Amblygonite

Grum-Grzhimailo, S. V. (1949) On the alexandrite color of crystal, Gems and Gemology, 6. 5. 143-145

Gübelin, E. and Schmetzer, K. (1982b) Gemstones with alexandrite effect, Gems and Gemology, 18. 4. 197-203

Gübelin, E. and Shipley, R. M. (1941) The synthetic emerald, Gems and Gemology, 3. 10. 146-150

Gübelin, E. J. (1940) Differentiation between Russian and Colombian emeralds, Gems and Gemology, 3. 6. 89-92

Gübelin, E. J. (1941) The synthetic emerald, Gems and Gemology, 3. 10. 146-150

Gübelin, E. J. (1945) Inclusions as a means of identification - Parts 1, 2 and 3, Gems and Gemology, 5. 2, 3, 4. 226-231, 242-247, 270-274

Gübelin, E. J. (1950) Some additional data on Indian emeralds, Gems and Gemology, 7. 1. 13-22

Gübelin, E. J. (1955) Amblygonite: Old mineral - new gem, Gems and Gemology, 8. 7. 208-214

Gübelin, E. J. (1956a) The emerald from Habachtal, Gems and Gemology, 8. 10. 295-309

Gübelin, E. J. (1958c) Notes on the new emeralds from Sandawana, Gems and Gemology, 9. 7. 195-203

Gübelin, E. J. (1959) Promenores sôbre as novas esmeraldas de Sandawana, Revista Gemologia, 5. 17. 1-10

Gübelin, E. J. (1960) More light on beryls and rubies with synthetic overgrowth, Gems and Gemology, 10. 4. 105-113

Gübelin, E. J. (1961a) Ekanite: Another new metamict gem from Ceylon, Gems and Gemology, 10. 6. 163–179, 191

Gübelin, E. J. (1961b) Hydrothermal rubies and emerald-coated beryl, Journal of Gemmology, 8. 2. 49-63

Gübelin, E. J. (1962c) Ekanite, Gemmologist, 31. 373, 374. 142-152, 165-196

Gübelin, E. J. (1964) Ekanit: Ein neuer metamikter Edelstein aus Ceylon, Gold und Silber,

Gübelin, E. J. (1964a) Two new synthetic emeralds, Gems and Gemology, 11. 5. 139–148

Gübelin, E. J. (1964b) Zwei neue synthetische Smaragde, Zeitschrift der Deutschen Gesellschaft für Edelsteinkunde, 47.

Gübelin, E. J. (1968) Gemmologische Beobachtungen am neuen Smaragd aus Pakistan, Der Aufschluss, Special Issue 18.

Gübelin, E. J. (1976a) Alexandrite from Lake Manyara, Tanzania, Gems and Gemology, 15. 7. 203–209

Gübelin, E. J. (1976c) Problem des farbwechsels im alexandrit, Zeitschrift der Deutschen Gemmologischen Gesellschaft, 25. 2. 96-102

Gübelin, E. J. (1978a) New decorative gemstone from Burma, Lapis, 3. 2. 17-28

Gübelin, E. J. (1978c) The tears of Heliades, Gems and Gemology, 16. 3. 66–76

Gübelin, E. J. (1981a) The emerald and the ruby/spinel resources of Pakistan, 18th International Gemmological Conference - Proceedings, 8. 1/4. 61-66

Gübelin, E. J. (1981c) Pakistan enters the gem scene, Gems and Gemology, 17. 3. 180-181

Gübelin, E. J. and Chudoba, K. F. (1956), *Echt Oder Synthetisch?,* Stuttgart, Rühle-Diebener-Verlag KG, 156 pp.,

Hainschwang, T. and Notari, F. (2011) Multi-treated HPHT-grown synthetic diamonds showing some characteristics of natural diamonds. GGTL Laboratories Gemmological Newsletter

Hälenius U., Andreozzi G.B. and Skogby H. (2010) Structural relaxation around Cr3+ and the red-green color change in the spinel (sensu stricto)-magnesiochromite (MgAl2O4 - MgCr2O4) and gahnite-zincochromite (ZnAl2O4 - ZnCr2O4) solid-solution series. American Mineralogist, 95, (4), 456-462.

Hänni, H. A. (1983a) Comparaison chimique de émeraudes-naturelles et synthétiques, *Revue de Gemmologie a.f.g.*, 76. 6-8

Hazen, R.M. and Au, A.Y. (1986) High-pressure crystal chemistry of phenakite (Be2SiO4) and bertrandite (Be2Si2O7(OH)2). *Physics and Chemistry of Minerals* 13, 69-78.
Henn, U. (1994b) An update on synthetic stones manufactured in Russia - Properties and distinguishing features, American Gem Society - Conclave,
Henn, U. (1999b) Synthetic aquamarine im handel, Zeitschrift der Deutschen Gemmologischen Gesellschaft, 48. 3. 163-165

High Pressure Research, 20, (2), 219-227.

Hofmeister, A. M. and Rossman, G. R. (1985a) Exsolution of metallic copper from Lake County labradorite, Geology, 13. 9. 644-647

Holmes, R. J. and Crowningshield, G. R. (1960) A new emerald substitute, Gems and Gemology, 10. 1. 11-22

http://www.gia.edu/research-resources/news-from-research/index.html

http://www.giathai.net/Red_Feldspar_Special_Report.php

Hurlbut, C. S. and Weichel, E. J. (1946) Additional data on brazilianite, American Mineralogist, 31. 9/10. 507
Hyrsel, J. (1996) Gem aragonite from the Czech Republic, Canadian Gemmologist, 17. 3. 76-77
Hyrsel, J. (1997) Some new unusual cat’s eye, Canadian Gemmologist, 18. 4. 105-106
Iishi, K. (1978) Lattice dynamics of forsterite, American Mineralogist, 63. 11/12. 1198-1208
Iishi, K. (1979) Phonon spectroscopy and lattice dynamical calculations of anhydrite and gypsum, Physics and Chemistry of Minerals, 4. 4. 341-359
Iishi, K., E. Salje and C. Wemeke (1979), Phonon spectra and rigid-ion model calculations on andalusite, Physics and Chemistry of Minerals, 4. 2, 173-188.
Ingerson, E. and Barksdale, J. D. (1943) Iridescent garnet from the Adelaide Mining District, Nevada, American Mineralogist, 28. 5. 303-312
Ito, J. and Arem, J. E. (1970) Idocrase: Synthesis, phase relations and crystal chemistry, American Mineralogist, 55. 5/6. 880-912
Ito, T. (1947) The structure of epidote (H(Ca,Fe)Al2SiO13), American Mineralogist, 32. 5/6. 309-331
James, B. M. (1994) Mississippi agate, Rock and Gem, 72-75
Janeczek, J. and Sachanbinski, M. (1992) Babingtonite, Y-Al-rich titanite, and zoned epidote from the Strzegom pegmatites, Poland, European Journal of Mineralogy. 4. 2. 307-319

Johnson, M. L. and Kammerling, R.C. (1995b) Some interesting examples of "B-jade" examined at the GIA Gem Trade Laboratory, Hong Kong Jewellery, September. 118-120

Johnson, M. L. and Koivula, J. I. (1996c) Gem materials from the new locality at Tunduru, Tanzania, Gems and Gemology, 32. 1. 58-59

Johnson, M. L. and Koivula, J. I. (1997g) Inclusions-related fluorescence zoning in amber, Gems and Gemology, 33. 4. 301

Johnson, P. W. (1961a) All about emeralds natural or synthetic, Lapidary Journal, 15. 1. 118-131

Jones B. (2005a) The colorful beryl minerals, Rock and Gem, 35. 10. 20-25

Jones, F. T. (1952) Iris agate, American Mineralogist, 37. 7/8. 578-587

Jones, R. W. (1979) Chrysocolla, Arizona’s premier gem, Lapidary Journal, 33. 1. 6-16

Jordan, W. and Naughton, J. J. (1964) Growth of forsterite crystals in a reactive crucible, American Mineralogist, 49. 5/6. 806-808

Kalachev, V. N. (1993) Axinite: new finds in Russia, World of Stones, 3-4

Kane, R.E. (1979) "Trapiche" emerald, Gems and Gemology, 16. 7. 211

Kocman, V. and Rucklidge, J. (1973) The crystal structure of a titaniferous clinohumite, Canadian Mineralogist, 12, 1, 39-45

Koivula, J. I. (1980b) Gübelin identifies apatite in taaffeite, Gems and Gemology, 16, 12, 409

Koivula, J. I. (1980c) Inclusions in andalusite - A comparision of localities, Gems and Gemology, 16, 12, 401-404

Koivula, J. I. (1982a) Some observations on the treatment of lavender jadeite, Gems and Gemology, 18, 1, 32-35

Koivula, J. I. (1982b) Tourmaline as an inclusion in Zambian emeralds, Gems and Gemology, 18, 4, 225-227

Koivula, J. I. (1984b) Colored stones - emerald, Gems and Gemology, 20, 4, 244

Koivula, J. I. (1984c) Colored stones - chrysoberyl, Gems and Gemology, 20, 2, 121

Koivula, J. I. (1984e) Colored stones - synthetics, Gems and Gemology, 20, 1, 60

Koivula, J. I. (1985b) Aquamarine, Gems and Gemology, 21, 3, 185-186

Koivula, J. I. (1986a) Amblygonite treatment, Gems and Gemology, 22, 4, 246

Koivula, J. I. (1986b) Electrically treated chalcedony, Gems and Gemology, 22, 4, 246

Koivula, J. I. (1986c) Aquamarine, Gems and Gemology, 22, 4, 246

Koivula, J. I. (1986d) Colored stones - chrysoberyl, Gems and Gemology, 22, 4, 246

Koivula, J. I. (1986e) Colored stones - emerald, Gems and Gemology, 22, 4, 246

Koivula, J. I. (1986f) Colored stones - synthetics, Gems and Gemology, 22, 4, 246
Koivula, J. I. (1986c) Magnesite, Gems and Gemology, 22. 2. 114
Koivula, J. I. (1986e) Important new amazonite find, Gems and Gemology, 22. 4. 246-247
Koivula, J. I. (1986f) "Rainbow" moonstone, Gems and Gemology, 22. 2. 114
Koivula, J. I. (1987c) "Rainbow" moonstones are labradorite, Gems and Gemology, 23. 3. 175
Koivula, J. I. and Fritsch, E. (1993a) "Denim" lapis lazuli from Afghanistan, Gems and Gemology, 29. 3. 210
Koivula, J. I. and Fritsch, E. (1993b) "Rainbow" hematite from Brazil, Gems and Gemology, 29. 3. 209-210
Koivula, J. I. and Fritsch, E. (1993c) Apatite from Brazil and Madagascar, Gems and Gemology, 29. 1. 53-54
Koivula, J. I. and Fritsch, E. (1993d) Brazilian aragonite mistaken for ruby, Gems and Gemology, 29. 3. 212
Koivula, J. I. and Fritsch, E. (1993g) Some unusually large gems, Gems and Gemology, 29. 1. 56
Koivula, J. I. and Fritsch, E. (1993n) Natural resin from Colombia, Gems and Gemology, 29. 2. 135-136

Koivula, J. I. and Kammerling, R. C. (1991g) Purple and "chrome" green vesuvianites from Quebec, *Gems and Gemology*, 27. 3. 185

Koivula, J. I., Kammerling, R. C. and Fritsch, E. (1992g) Beryl beads with multiple color enhancements, Gems and Gemology, 28. 2. 136
Koivula, J. I., Kammerling, R. C. and Fritsch, E. (1992h) Diopside from Tanzania, Gems and Gemology, 28. 3. 201
Koivula, J. I., Kammerling, R. C. and Fritsch, E. (1992m) Blue chalcedony from Montana, Gems and Gemology, 28. 3. 200
Koivula, J. I., Kammerling, R. C. and Fritsch, E. (1992o) More amber from Russia, Gems and Gemology, 28. 3. 200

Liddicoat, R. T. (1962b) Developments and highlights at the Gem Trade Lab in Los Angeles, *Gems and Gemology*, 10, 10. 315-318

Liddicoat, R. T. (1963c) Developments and highlights at the Gem Trade Lab in Los Angeles, *Gems and Gemology*, 11. 2. 50-57
Liddicoat, R. T. (1963f) Other unusual gem materials recently encountered, *Gems and Gemology*, 11. 1. 20
Liddicoat, R. T. (1963g) Synthetic emerald versus natural, *Gems and Gemology*, 11. 3. 91
Liddicoat, R. T. (1964c) Star labradorite, *Gems and Gemology*, 11. 5. 155
Liddicoat, R. T. (1966b) Rare cat's eye, *Gems and Gemology*, 12. 4. 120
Liddicoat, R. T. (1967e) Chrome-rich chalcedony, *Gems and Gemology*, 12. 6. 188-190
Liddicoat, R. T. (1967f) Developments and highlights at the Gem Trade Lab in Los Angeles, *Gems and Gemology*, 12. 6. 183-190
Liddicoat, R. T. (1967g) Developments and highlights at the Gem Trade Lab in Los Angeles, *Gems and Gemology*, 12. 7. 212-222
Liddicoat, R. T. (1968a) Developments and highlights at the Gem Trade Lab in Los Angeles, *Gems and Gemology*, 12, 9. 281-287
Liddicoat, R. T. (1969h) High indices in synthetic emerald. Gems and Gemology, 13. 2. 64-65
Liddicoat, R. T. (1970m) Rare inclusions in synthetic emerald. Gems and Gemology, 13. 5. 152-152
Liddicoat, R. T. (1972g) Synthetic alexandrite finally reaches the market. Gems and Gemology, 14. 4. 102-104
Liddicoat, R. T. (1972h) Transparent Pakistani diopside. Gems and Gemology, 14. 1. 20
Liddicoat, R. T. (1973d) Twinned star, Gems and Gemology, 14. 6. 183
Liddicoat, R. T. (1975d) Moldavite, Gems and Gemology, 15. 3. 75
Liddicoat, R. T. (1975e) Semitransparent jadeite, Gems and Gemology, 15. 3. 73-74
Liddicoat, R. T. (1976b) Another synthetic emerald. Gems and Gemology, 15. 5. 138
Liddicoat, R. T. (1976e) Rare and unusual stones, Gems and Gemology, 15. 8. 235-236
Liddicoat, R. T. (1976f) Rarely used gem materials seen recently, Gems and Gemology, 15. 5. 138
Liddicoat, R. T. (1977a) Very interesting items, Gems and Gemology, 15. 10. 295-296
Liddicoat, R. T. (1977b) Zoned emerald, Gems and Gemology, 15. 11. 328-329

Louterback, G. D. (1907) Benitoite, a new California gem mineral, University of California Publications - Bulletin of the Department of Geology, 5. 9. 149-153

Low, W. and Zeira, S. (1972) ESR spectra of Mn2+ in heat-treated aragonite, American Mineralogist, 57. 7/8. 1115-1124

Mével, C. and Kiénast, J. R. (1986) Jadeite-kosmochlor solid solution and chromian sodic amphiboles in jadedites and associated rocks from Tawmaw (Burma), Bulletin de Mineralogie, 109, 6, 617-633

© CIBJO 2016 All rights reserved

Moroz, I. I., Roth, M. L. and Deich, V. B. (1999b) The visible absorption spectroscopy of emeralds from different deposits, *Australian Gemmologist*, 20, 8. 315-320

Moses, T., Reinitz, I. and McClure, S.F. (1998b) Beryl, plastic-coated assemblage imitating trapiche emerald, Gems and Gemology, 34. 3. 212
Moses, T., Reinitz, I. and McClure, S.F. (1998f) Diamond color treated from orangy yellow to reddish purple, Gems and Gemology, 34. 2. 213-214
Moses, T., Reinitz, I. and McClure, S.F. (1998g) Diamond colored by pink coating, Gems and Gemology, 34. 2. 128-129
Moses, T., Reinitz, I. and McClure, S.F. (1999c) Yellow to yellow-green diamonds treated by HPHT from GE and others, Gems and Gemology, 35. 4. 203-204
Mossman, D. J. and Pawson, D. J. (1976) X-ray and optical characterization of the forsterite-fayalite-tephroite series with comments on knebelite from Bluebell Mine, British Columbia, Canadian Mineralogist, 14. 4. 479-486
Muir, I. D. (1955) Transitional optics of some andesines and labradorites, Mineralogical Magazine, 30. 228. 545-568

Murdoch J. (1936), Andalusite in pegmatite, American Mineralogist, 21, 1, 68-69.

Murray, J. (1955) Phosphate minerals of the Borborema Pegmatites: I-Patrimonio, American Mineralogist, 40, 1/2. 50-63

Nickel E H (1968) Structural stability of minerals with the pyrite, marcasite, arsenopyrite and löllingite structures, The Canadian Mineralogist, 9, 311-321

Pillet, M., C. Smith and B. Lasnier (1992), Utilité de la microsonde Raman pour l'identification non-destructive des gemmes (compilation d'une selection representative de leurs spectres Raman), Revue de Gemmologie a.f.g., 111, 11-60.

Pirsson, L.V. (1890) On the fowlerite variety of rhodonite from Franklin and Sterling, N.J. American Journal of Science 140, 484-488.

Pough, F.H. (1964b), Rare faceting minerals - Beginning of a series on silicates - part 1, Lapidary Journal, 18, 7, 730-740.

Proceedings of the Indian Academy of Sciences

Reeve, R. J. (1972) Brazilianite, Australian Gemmologist, 11. 5. 8-10

Ribbe, P. H. (1979) Titanium, fluorine, and hydroxyl in the humite minerals, American Mineralogist, 64. 9/10. 1027-1035

Richard W. E. (1940), Crystal chemistry of the phosphates, arsenates and vanadates of the type AXO₄(2), American Mineralogist, 25, 7, 441-479.

Sax, M. (1996) Recognition and nomenclature of quartz materials with specific reference to engraved gemstones, Jewellery Studies, 7, 63-71

Scarratt, K. (1987g) Notes from the Laboratory - 11, Journal of Gemmology, 20, 7/8, 406-422
Scarratt, K. (1988a) Notes from the Laboratory - 12, Journal of Gemmology, 21, 3, 131-139
Scarratt, K. (1992b) Notes from the Laboratory: Mabe Pearl. The Journal of Gemmology, 23, 3, 131-139

Schmetzer, K. (1999a) Clues to the process used by General Electric to enhance the GE POL diamonds, *Gems and Gemology*, 35. 4. 186-190

Schmetzer, K. and Ottemann, J. (1979b) Zur identität von lawrowit, Neues Jahrbuch für Mineralogie Monatshefte, 4. 189-192

Schnellrath, J. (1990) Brasilianische andalusite und zink-staurolithe von edelsteinqualität; Chemismus, bildungsbedingungen, optische und krisallographische Eigenschaften, Kurzmitleilungen aus dem Institut für Edelsteinforschung, 5. 1/2. 5-8

Schwarz, D. (1990c) New aspects of the emerald workings in Colombia, Australian Gemmologist, 17. 5. 168-170

Sciaguato, R. (2004) Rare Perle Naturali, Conch and Melo Pearls, La Piramide, Milano, 111
Seemann, R. (1986) Famous mineral localities: Knappenwand, Untersulzbachtal, Austria, Mineralogical Record, 17. 3. 167-181
Seki, Y. (1959) Relation between chemical composition and lattice constants of epidote, American Mineralogist, 44. 7/8. 720-730

Shankland, T. J. and Hemmenway, K. (1963) Synthesis of forsterite crystals, American Mineralogist, 48. 1/2. 200

Shannon, E. V. (1923) Note on cobaltiferous gahnite from Maryland, American Mineralogist, 8. 8. 147-148

Shaub, B. M. (1979) Genesis of thunder eggs, geodes, and agates of igneous origin, Lapidary Journal, 32. 11, 12. 2340-2354, 3548-2566

Shida, J. (1998b) CL and other characteristics of various type of yellow diamonds, Gems and Gemology, 29. 340. 24-26

Shipley, R. (1942) Synthetic emeralds appear commercially in small quantities, Gems and Gemology, 4. 3. 40 and 42

Smith G. (1977), Low-temperature optical studies of metal-metal change-transfer transitions in various minerals, Canadian Mineralogist, 15, 4, 500-507.

192

Stephenson J., Kouznetsov N. (2009). Major deposits of demantoid

Strunz, H. and Pinnidae Family (Pen pearls).

Sturman N., Homkajae A., Manustrong A., Somsa...
Sunagawa, I. (1964) A distinction between natural and synthetic emeralds, American Mineralogist, 49. 5/6. 785-793

Trossarelli, C. (1986) Synthetic alexandrite from USSR (in Italien), La Gemmologia, 11, 4, 6-22

Trumper, L. C. (1949) Kornerupine find, Gemmological, 18, 212. 71-72

Washington, H. S. and Merwin, H. E. (1923) Note on enstatite, hypersthene, and actinolite, American Mineralogist, 8. 3. 63-67

Zackariasen, W. H. (1930) The crystal structure of benitoite, BaTiSi₅O₁₈, Zeitschrift fur Kristallographie, 74, 139-146

Zhang, C., Li, S., Ma, Z., Xie, L. and Zhang, R. (2006) A novel matrix protein p10 from the nacre of pearl oyster (Pinctada fucata) and its effects on both CaCO₃ crystal formation and mineralogenic cells, Marine Biotechnology, 8, 6, 624-633
Zwaan P.C. (1992) La kornerupine d'Embilipitiya, Sri Lanka, Revue de Gemmologie a.f.g., 110. 5-6
Zwaan P.C. (1996) Enstatite, cordierite, kornerupine, and sacpolite with unusual properties from Embilipitiya, Sri Lanka, Gems and Gemology, 32. 4. 262-269
Index

Accommodation ...ii, 15
Amendments ...iii, 18
Anonymous23, 25, 28, 40, 43, 44, 51, 62, 63
Approved Documents12
Audit ..ii, 8
Authorized ..16
Calibration ...ii, 8
Certified Reference Materialsii, 8, 16
CIBJO ..i, iv, v, vi, 7, 10, 14, 16, 18
CIBJO Secretariat ...v
Commercial ...iv, v, 9, 10, 11
Competent Subcontractorii, 8
Complaints ...ii, 13, 14
Confidentiality ..13
Conflicts of Interest11
Consensus Standards16
Corrective Actions13
Correctness ..15
Customer/s ..vi, 11, 12, 13, 18
Damage16, 62, 63, 64, 65, 66, 67, 68,
 Defined ..10, 11, 12, 15
Demonstrated Skills15
Descriptions ...v
Diamond ...v, 7, 8, 27, 28
Discussions ...12
Environmental ...175, 215
Equipment ...ii, 16
Ethics ..v
Executive Committeeiv, v
Experiments ...221
Feedback ..13, 14
Financial ..11
Format ...18
Gem Materialsii, iii, 8, 9, 10, 11, 12, 13, 59
Gemmologicali, ii, v, vi, 7, 8, 12, 14, 15, 16
Gemmological Commissionvi
Gemmology ...ii, 9,
 Gemology ...ii, 9,
 Grading ...ii, vi, 7, 8, 9, 11, 15, 16, 17, 27
Human Factors ...15
Identification8, 12, 13, 14, 16, 17, 18, 27, 67
Integrity ..11
Internal Audits ..ii, 14
Internal Calibration's ii, vi, 7, 9, 11, 13, 14, 15, 16,
 17
Interpretations ...18
Investors ...11
ISO/IEC 17025 ..vi, 7, 12
Job Descriptions15
Judgement ...11
Key Personnel ...11
Laboratoryi, ii, vi, 7, 9, 12, 14, 16, 18
Laboratory Personnel11, 16
Laboratory Planning System15
Legally Responsible10
Location/s ...12, 16, 17
Maintenance12, 14, 16
Malfunction ...16
Managementi, ii, 10, 11, 14
Management Meetings15
Management Requirementsii, 10
Management Review/sii, 14, 15
Management Systemii, 7, 9, 10, 11, 12, 13
Measurement ...10, 15, 17, 70
Measurement Traceability15
Method Validation15
Modification ...16
Partly Owned ...11
Pearl ...v, 8, 61, 62, 63, 64, 65, 66, 67, 68
Permanent Control16
Personnelii, 11, 14, 15, 16, 17
Policies And Procedures9, 13, 14
Political/Administrative Borders11
Precious Metals ..v, 8
Pressures ..11
Preventive actions14
Primary Customer13
Procedure/s8, 10, 12, 13, 14, 16, 17
Profession/Professionalv, 9
Purchase ...16
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quality</td>
<td>ii, 9, 14</td>
</tr>
<tr>
<td>Record/s</td>
<td>12, 13, 16</td>
</tr>
<tr>
<td>Reference Materials</td>
<td>ii, 8, 9, 16</td>
</tr>
<tr>
<td>Reference Standards</td>
<td>ii, 9, 16</td>
</tr>
<tr>
<td>Registration</td>
<td>11</td>
</tr>
<tr>
<td>Reliability</td>
<td>8, 15</td>
</tr>
<tr>
<td>Repair</td>
<td>16</td>
</tr>
<tr>
<td>Report/s</td>
<td>ii, 10, 17, 18, 33</td>
</tr>
<tr>
<td>Resolution of Complaints</td>
<td>13</td>
</tr>
<tr>
<td>Responsibilities</td>
<td>11</td>
</tr>
<tr>
<td>Samples</td>
<td>10, 15, 62, 63, 64, 65, 66, 67, 70</td>
</tr>
<tr>
<td>Sampling</td>
<td>ii, 10, 17</td>
</tr>
<tr>
<td>Scientific Research</td>
<td>ii, 10, 17</td>
</tr>
<tr>
<td>Secondary Customer</td>
<td>13</td>
</tr>
<tr>
<td>Sectors and Commissions</td>
<td>iv, v</td>
</tr>
<tr>
<td>SI Units</td>
<td>ii, 10, 16</td>
</tr>
<tr>
<td>Specific Methods</td>
<td>18</td>
</tr>
<tr>
<td>Statistical Methods</td>
<td>17</td>
</tr>
<tr>
<td>Subcontractor</td>
<td>13</td>
</tr>
<tr>
<td>Subcontracts</td>
<td>13</td>
</tr>
<tr>
<td>Technical</td>
<td>i, ii, 15</td>
</tr>
<tr>
<td>Technical Characteristics</td>
<td>10</td>
</tr>
<tr>
<td>Technical Judgement</td>
<td>11</td>
</tr>
<tr>
<td>Technical Operations</td>
<td>7, 13</td>
</tr>
<tr>
<td>Technical Record</td>
<td>ii, 9, 14</td>
</tr>
<tr>
<td>Technical Requirements</td>
<td>15</td>
</tr>
<tr>
<td>Technical Staff</td>
<td>11</td>
</tr>
<tr>
<td>Test Protocols</td>
<td>11</td>
</tr>
<tr>
<td>Test Reports</td>
<td>iii, 15, 18</td>
</tr>
<tr>
<td>Test Results</td>
<td>vi, 7, 18</td>
</tr>
<tr>
<td>Testing</td>
<td>ii, 11, 16</td>
</tr>
<tr>
<td>Traceability</td>
<td>ii, 8, 9, 10, 16, 17</td>
</tr>
<tr>
<td>Trained and Qualified</td>
<td>14</td>
</tr>
<tr>
<td>Unambiguous</td>
<td>17</td>
</tr>
<tr>
<td>World Jewellers Vigilance</td>
<td>v</td>
</tr>
</tbody>
</table>